Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34392
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何鏡波(Keang-Po Ho)
dc.contributor.authorHao-Kai Chenen
dc.contributor.author陳浩凱zh_TW
dc.date.accessioned2021-06-13T06:06:17Z-
dc.date.available2006-07-17
dc.date.copyright2006-07-17
dc.date.issued2006
dc.date.submitted2006-06-12
dc.identifier.citation1. K.-P. Ho, Phase-Modulated Optical Communication Systems, Springer, 2005.
2. Agilent Technologies, “Making Time-Resolved Chirp Measurement Using the Optical Spectrum Analyzer and Digital Communications Analyzer,” Application Note 1550-7.
3. J. M. Senior, Optical Fiber Communications Principles and Practice, Prentice Hall, 1992, 2 edition.
4. G. P. Agrawal, Fiber-Optic Communication System, Wiley Interscience, 2002, 3 edition.
5. T. P. Lee, C. A. Burrus, and R. H. Saul, Optical Fiber Telecommunications II, Academic Press, 1988.
6. R. S. Tucker, “High-Speed Modulation of Semiconductor Laser,” Journal of Lightwave Technology, vol. LT-3, no. 6, pp. 2572-2584, December 1985.
7. F. Koyama, and K. Iga, “Frequency Chirping in External Modulators,” Journal of Lightwave Technology, vol. 6, no. 1, pp. 87-93, January 1988.
8. P.-K. Lau, and T. Makino, “Effects of Laser Diode Parameters on Power Penalty in 10 Gb/s Optical Fiber Transmission Systems,” Journal of Lightwave Technology, vol. 15, no. 9, pp. 1663-1668, September 1997.
9. H.-K. Chen, C.-C. Wu, H.-C. Wang, and K.-P. Ho, “Generation of Low-Chirp Signal by Passively-Filtering and Directly-Modulation of an 1550-nm Semiconductor Laser,” in Symposium on Technology Fusion of Optoelectronic and Communications, STFOC ’05, Taipei, Taiwan, paper 20F14, pp. 106-107, May 17-22, 2005.
10. P. J. Corvini, and T. L. Koch, “Computer Simulation of High-Bit-Rate Optical Fiber Transmission Using Single-Frequency Lasers,” Journal of Lightwave Technology, vol. LT-5, no. 11, pp. 1591-1595, November 1987.
11. C. Laverdiere, A. Fekecs, and M. Tetu, “A New Method for Measuring Time-Resolved Frequency Chirp of High-Bit-Rate Sources,” IEEE Photonics Technology Letters, vol. 15, no. 3, pp. 446-448, March 2003.
12. R. A. Saunder, J. P. King, and I. Hardcastle, “Wideband Chirp Measurement Technique for High-Bit-Rate Sources,” IEEE Electronics Letters, vol. 30, no. 16, pp. 1336-1338, August 1994.
13. R. S. Vodhanel, and S. Tsuji, “12GHz FM Bandwidth for a 1530nm DFB Laser,” IEEE Electronics Letters, vol. 24, no. 22, pp. 1359-1361, October 1988.
14. H. Volterra, “Indium Phosphide Addresses 10-Gbit/s Metro Demand,” Laser Focus World April, 2002.
15. Y. Luo, B. Xiong, J. Wang, and C. Sun, “High Speed Integrated Electro-Absorption Modulators on Novel Submounts,” in Asia Pacific Physics Conference 9th, October 25-31, 2004.
16. P. C. Koh, Y. A. Akulova, and G. A. Fish, “Chirp-Controlled EA-Modulator/SOA/ Widely-Tunable Laser,” Optical Fiber Communication Conference, 2005. vol. 3, pp. 103-105, March 6-11, 2005.
17. R. A. Salvatore, R. T. Sahara, M. A. Bock, and I. Libenzon, “Electroabsorption Modulated Laser for Long Transmission Span,” IEEE Journal of Quantum Electronics, vol. 38, no. 5, pp. 464-476, May 2002.
18. C. S. Wong, and H. K. Tsang, “Improvement of Directly Modulated Diode Laser Pulses Using an Optical Delay Interferometer,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 632-634, February 2004.
19. C. S. Wong, and H. K. Tsang, ”Filtering Directly Modulated Laser Diode Pulses with a Mach-Zehnder Optical Delay Interferometer,” IEEE Electronics Letters, vol. 40, no. 15, pp. 938-940, July 2004.
20. L. Illing, and M. B. Kennel, “Shaping Current Waveforms for Direct Modulation of Semiconductor Lasers,” IEEE Journal of Quantum Electron, vol. 40, no. 5, pp. 445-452, May 2004.
21. P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, ”38.5km Error Free Transmission at 10Gbit/s in Standard Fiber Using a Low Chirp, Spectrally Filtered, Directly Modulated 1550-nm DFB Laser,” IEEE Electronics Letters, vol. 33, no. 4, pp. 310-311, February 1997.
22. L. S. Yan, Y. Wang, B. Zhang, C. Yu, J. McGeehan, L. Paraschis, and A. E. Willner, “Reach Extension in 10Gb/s Directly Modulated Transmission Systems Using Asymmetric and Narrowband Optical Filtering,” Optics Express, vol. 13, no. 13, pp. 5107-5115, June 27, 2005
23. Y. Sorel, J. F. Kerdiles, C. Kazmierski, M. Blez, D. Mathoorasing, and A. Ougazzaden, “10 Gbit/s Transmission Experiment Over 165 km of Dispersive Fiber Using ASK-FSK Modulation and Direct Detection,” IEEE Electronics Letters, vol. 29, no. 11, pp. 973–975, May 1993.
24. C.-H. Lee, S.-S. Lee, H. K. Kim, and J.-H. Han, “Transmission of Directly Modulated 2.5Gb/s Signals Over 250km of Nondispersion-Shifted Fiber by Using a Spectral Filtering Method,” IEEE Photonics Technology Letters, vol. 8, no. 12, pp. 1725-1727, December 1996.
25. R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of Directly Modulated DFB Lasers in 10-Gb/s ASK, FSK, and DPSK Lightwave Systems,” Journal of Lightwave Technology, vol. 8, no. 9, pp. 1379–1386, September 1990.
26. C. M. Miller, “Intensity Modulation and Noise Characterization of High-Speed Semiconductor Lasers,” IEEE LTS, vol. 2, no. 2, pp. 44–50, May 1991.
27. M. Schiess, and H. Carlden, “Evaluation of the Chirp Parameter of a Mach-Zehnder Intensity Modulator,” IEEE Electronics letter, vol. 30, no. 18, pp. 1524-1525, September 1994.
28. A. J. Price, L. Pierre, R. Uhel, and V. Havard, “210km Repeatless 10 Gb/s Transmission Experiment Through Nondispersion-Shifted Fiber Using Partial Response Scheme,” IEEE Photonics Technology Letter, vol. 7, no. 10, pp. 1219-1221, October 1995.
29. CyOptics Inc., “Definitions of Parameters 2001,” CyOptics White Paper WP-011101-B.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34392-
dc.description.abstract當雷射二極體受到調變信號影響後,其雷射內部共振腔材料的等效長度會受到調變信號的影響而有些微的變化,這個變化會造成雷射輸出波長的改變,而這種動態響應的變化就叫做“啁啾效應”。
本篇論文主要在詳細探討當雷射經過調變後所產生的啁啾效應,並且就不同的調變的方法,如直接調變雷射(Directly-Modulated Laser, DML)、電吸收調變器(Electro-Absorption Modulator, EAM)、與馬赫任德調變器(Mach-Zenhder Modulator, MZM)等,進行分析與測量其啁啾效應的結果,並藉由了解其啁啾的特性對於傳輸時的影響。
直接調變雷射會產生特別嚴重的啁啾效應,當與光纖的色散互相作用下會嚴重的影響傳輸距離。因此我們所提出來的方法便是利用傳輸端所產生的頻率鍵移(Frequency Shift Keying, FSK)信號透過光濾波器轉換成開關鍵移(On-Off Keying, OOK)信號,以便在傳輸端直接抑制啁啾的效應,進而達到在傳輸更遠的距離時能有很好的傳輸品質。
zh_TW
dc.description.abstractSemiconductor laser change the output light intensity with an modulated voltage or current. However, the signal output phase or frequency also changes to give a dynamic chirp effect. Combined with chromatic dispersion, chirp effect typically limits the transmission distance of an optical signal.
In this thesis, we focus on the chirp effect of directly-modulated semiconductor laser (DML) and external modulators such as Electro-Absorption Modulator (EAM) and Mach-Zenhder Modulator (MZM). The analyzed and measured results are used to investigate the impact of chirp to a lightwave transmission system.
From experimental measurement, directly-modulated semiconductor has severe chirp effect that limits the transmission dispersion when interacting with fiber chromatic dispersion. The chirp effect is suppressed by passing a directly-modulated signal through a narrow-band optical filter to convert the frequency-modulated signal to on-off keying signal. The transmission distance is extended from 20 to over 60 km.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:06:17Z (GMT). No. of bitstreams: 1
ntu-95-R93942083-1.pdf: 2309268 bytes, checksum: b8751f7ce72af20a0c780c189d9ab7ef (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
致謝 III
目次 IV
圖表索引 VI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 2
第二章 半導體雷射的特性 4
2.1 雷射原理 4
2.1.1 受激放射與自發性放射 4
2.1.2 居量反轉 6
2.1.3 雷射共振腔 7
2.1.4 半導體雷射接面結構 9
2.2 雷射特性 10
2.2.1 連續波(CW)的特性 10
2.2.2 半導體雷射的小信號響應 12
2.2.3 半導體雷射的大信號響應 16
第三章 啁啾效應的量測與結果 19
3.1啁啾效應 19
3.2 啁啾效應的測量方法 23
3.2.1 頻率鑑別法 23
3.2.2 時間解析(Time-Resolved)啁啾量測法 25
3.3 調變器種類的介紹及啁啾量測結果 28
3.3.1 直接調變(Directly-Modulated)雷射的特性及啁啾量測結果 29
3.3.2 電吸收調變器(Electro-Absorption Modulator)的特性及啁啾量測結果 36
3.3.3 馬赫任德調變器(Mach-Zenhder Modulator)的特性及啁啾量測結果 43
第四章 半導體雷射中啁啾效應在傳輸上的影響與應用 46
4.1 研究目的 46
4.2 產生低啁啾信號的原理與方法 48
4.2.1 使用直接調變產生開關鍵移(OOK)信號的缺點 48
4.2.2 使用被動光濾波器產生低啁啾的信號 51
4.3 討論 61
第五章 結論 63
參考文獻 66
著作列表 69
作者簡歷 71
dc.language.isozh-TW
dc.subject頻率鍵移zh_TW
dc.subject啁啾zh_TW
dc.subject開關鍵移zh_TW
dc.subject調變器zh_TW
dc.subjectchirpen
dc.subjectFSKen
dc.subjectOOKen
dc.subjectoptical modulationen
dc.title雷射二極體上的啁啾效應及其在傳輸時之應用與影響zh_TW
dc.titleChirp Effect of Semiconductor Diode Lasers and Its Application and Impact on Lightwave Transmissionen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曹恆偉(Hen-Wai Tsao),盧信嘉(Hsin-Chia Lu),廖顯奎(Shien-Kuei Liaw)
dc.subject.keyword啁啾,頻率鍵移,開關鍵移,調變器,zh_TW
dc.subject.keywordchirp,FSK,OOK,optical modulation,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2006-06-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
2.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved