請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34347完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁啟德(Chi-Te Liang) | |
| dc.contributor.author | Jing-Han Chen | en |
| dc.contributor.author | 陳經函 | zh_TW |
| dc.date.accessioned | 2021-06-13T06:04:10Z | - |
| dc.date.available | 2008-06-28 | |
| dc.date.copyright | 2006-06-28 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-06-18 | |
| dc.identifier.citation | [1] H. L. St¨ormer, R. Dingle, A. C. Gossard, W. Wiegmann, and
M. D. Struge, Solid State Commun. 29, 705 (1979). [2] J. R. Juang, Master thesis, National Taiwan University (2003). [3] R. Dingle, H. L. St¨ormer, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 33, 665 (1978). [4] Jasprit Singh, Physics of semiconductors and their heterostructures (McGraw-Hill, New York, 1993). [5] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, J. Appl. Phys. 85, 3222 (1999). [6] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981). [7] P. T. Coleridge, P. Zawadzki, and A. S. Sachrajda, Phys. Rev. B 49, 10798 (1994). [8] P. T. Coleridge, R. Stoner, and R. Fletcher, Phys. Rev. B 39, 1120 (1989). [9] T. Ando, J. Phys. Soc. Jpn. 37, 1233 (1974). [10] A. Isihara and L. Smrˇcka, J. Phys. C 19, 6777 (1989). [11] B. I. Halperiin, Phys. Rev. B 25, 2185 (1982). [12] M. B¨uttiker, Phys. Rev. B 38, 9375 (1988). [13] K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 449 (1980). [14] Daniel C. Tsui, Nobel Lecture, Rev. Mod. Phys. 71, 891 (1999). [15] J. K. Jain, Adv. Phys. 41, 105 (1992). [16] J. K. Wang and V. J. Goldman ,Phys. Rev. Lett. 67, 749 (1991). [17] Daniel C. Tsui, H. L. St¨ormer and A. C. Gossard, Phys. Rev. Lett. 48 1559 (1982). [18] R. B. Laughlin, Phys. Rev. Lett. 50 1395 (1983). [19] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983). [20] B. I. Halperin, Phys. Rev. Lett. 52, 1583 & 2390 (1984). [21] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989). [22] G. Zala, B. N. Narozhny, and I. L. Aleiner, Phys. Rev. B 64, 214204 (2001). [23] H.-I. Cho, G. M. Gusev, Z. D. Kvon, V. T. Renard, J.-H. Lee and J.- C. Portal, Phys. Rev. B 71, 245323 (2005). [24] J. R. Juang, T.-Y. Huang, T.-M. Chen, M.-G. Lin, G.-H. Kim, Y. Lee, C.-T. Liang, D. R. Hang, Y. F. Chen and J.-I. Chyi, J. Appl. Phys. 94, 3181 (2003). [25] P. Drude, Ann. Phys. (Leipzig) 1, 566 (1900). [26] Charles Kittel, Introduction to solid state physics 7th edition, (Wiley, New York, 1996) [27] Neil W. Ashcroft and N. David Mermin, Solid state physics (Saunders College, Philadelpha, 1976). [28] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, Y. Yamada and T. Mukai, Jpn. J. Appl. Phys., Part 2, 34, L1332 (1995). [29] G. E. Bulman, K. Doverspike, S. T. Sheppard, T. W.Weeks, H. S. Kong, H. M. Dieringer, J. A. Edmond, J. D. Brown, J. T. Swindell and J. F. Schetzina, Electron. Lett. 33, 1556 (1997). [30] M. P. Mack, A. Abare, M. Aizcorbe, P. Kozodoy, S. Keller, U. K. Mishra, L. Coldren and S. DenBaars, MRS Internet J. Nitride Semicond. Res. 2, 41 (1997). [31] A. Kuramata, K. Domen, R. Soejima, K. Horino, S. Kubota and T. Tanahashi, Jpn. J. Appl. Phys., Part 2, 36, L1130 (1997). [32] D. R. Hang, C.-T. Liang, C. F. Huang, Y. H. Chang, Y. F. Chen, H. X. Jiang and J. Y. Lin, Appl. Phys. Lett. 79, 66 (2001). [33] D. R. Hang, C.-T. Liang, J. R. Juang, T.-Y. Huang, W. K. Hung, Y. F. Chen, G.-H. Kim, J. H. Lee, and J. H. Lee, J. Appl. Phys. 93, 2055 (2003). [34] J. R. Juang, T.-Y. Huang, T.-M. Chen, M.-G. Lin, G.-H. Kim, Y. Lee, C.-T. Liang, D. R. Hang, Y. F. Chen and J.-I. Chyi, J. Appl. Phys. 94, 3181 (2003). [35] D. R. Hang, J. R. Juang, T.-Y. Huang, C.-T. Liang, W. K. Hung, Y. F. Chen, G.-H. Kim, Y. Lee, J. H. Lee, J. H. Lee, and C. F. Huang, Physica E 22, 578 (2004). [36] J. R. Juang, D. R. Hang, M.-G. Lin, T.-Y. Huang, G.-H. Kim, C.- T. Liang, Y. F. Chen, W. K. Hung, W. H. Seo, Y. Lee and J. H. Lee, Chin. J. Phys. 42, 629 (2004). [37] K. S. Cho, T.-Y. Huang, C. P. Huang, Y. H. Chiu, C.-T. Liang, Y. F. Chen, and I. Lo, J. Appl. Phys. 96, 7370 (2004). [38] K. S. Cho, T.-Y. Huang, H. S. Wang, M.-G. Lin, T.-M. Chen, C.- T. Liang, Y. F. Chen and I. Lo, Appl. Phys. Lett. 86, 222102 (2005). [39] D. R. Hang, C. F. Huang, and Y. F. Chen, Phys. Stat. Sol. (c) 0, 2323 (2003). [40] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, J. Appl. Phys. 85, 3222 (1999). [41] A. Ozgur, W. Kim, Z. Fan, A. Botchkarev, A. Salvador, S. N.Mohmmad, B. Sverdlov, and H. Morkoc, Electron. Lett. 31, 1389 (1995). [42] M. A. Khan, Q. Chen, M. S. Shur, B. T. MsDermott, J. A. Higgins, J. Burm, W. J. Schaff, and L. F. Eastman, IEEE Electron Device Lett. 17, 584 (1996). [43] S. C. Binari, J. M. Redwing, G. Kelner, and W. Kruppa, Electron. Lett. 33, 242 (1997). [44] R. Gaska, Q. Chen, J. Yang, A. Osinsky, M. A. Khan, and M. S. Shur, IEEE Electron Device Lett. 18, 492 (1997). [45] Y. F. Wu, S. Keller, P. Kozodoy, B. P. Keller, P. Parikh, D. Kapolnek, S. P. DenBaars, U. K. Mishra, IEEE Electron Device Lett. 18, 290 (1997). [46] R. Dimitrov, L. Wittmer, H. P. Felsl, A. Mitchell, O. Ambacher, and M. Stutzmann, Phys. Stat. Sol. (a) 168, 7 (1998). [47] For example, see A. D. Mirlin, J. Wilke, F. Evers, D. G. Polyakov and P. Wolfle, Phys. Rev. Lett. 83, 2801 (1999). [48] Jing-Han Chen, Jyun-Ying Lin, Jung-Kai Tsai, Hun Park, Gil-Ho Kim, D.H. Youn, Hyun-Ick Cho, Eun-Jin Lee, Jung-Hee Lee, C.-T. Liang and Y. F. Chen, to be published in J. Korean Phys. Soc. 48, 1539 (2006). [49] Jyun-Ying Lin, Jing-Han Chen, Gil-Ho Kim, Hun Park, D. H. Youn, Chang Min Jeon, Jeong Min Baik, Jong-Lam Lee, C.-T. Liang, and Y. F. Chen, to be published in J. Korean Phys. Soc. (2006). [50] Dietrich Stauffer, Introduction to percolation theory (Taylor & Francis, London, 1992). [51] Horst L. St¨ormer, Daniel C. Tsui, Arthur C. Gossard, Rev. Mod. Phys. 71, S298 (1999). [52] R. R. Du, H. L. St¨ormer, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett 70, 2994 (1993). [53] H. L. St¨ormer, R. R. Du, W. Wang, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W.West, Semicond. Sci. Technol. 9, 1853 (1994). [54] D. R. Leadley, R. J. Nicholas, C. T. Foxon and J. J. Harris, Phys. Rev. B 72, 1906 (1994). [55] H. C. Manoharan, M. Shayegan, and S. J. Klepper, Phys. Rev. Lett. 73, 3270 (1994). [56] R. R. Du, H. L. St¨ormer, D. C. Tsui, ,A. S. Yeh, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett 73, 3274 (1993). [57] B. I. Halperin, P. A. Lee, and N. Reed, Phys. Rev. B 47, 7312 (1993). [58] R. E. Prange and S. M. Girvin, The Quantum Hall Effect (Springer- Verlag, New York, 1987). [59] J. K. Jain, Physics Today, April 2000, page 39. [60] Kerson Huang, Statistical mechanics 2nd edition (Wiley, New York, 1987). [61] G. W. Martin, D. L. Maslov, and M. Y. Reizer, Phys. Rev. B 68, 241309 (2003). [62] P. T. Coleridge, A. S. Sachrajda, H. Lafontaine, and Y. Feng, Phys. Rev. B 54, 14518 (1996). [63] D. R. Leadley, R. J. Nicholas, J. J. Harris and C. T. Foxon, Phys. Rev. B 58, 13036 (1998). [64] J. M. Leinaas, and J. Myrheim, Nuovo Cimento Soc. Ital. Fis., B 37, 1 (1977). [65] F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982). [66] F. Wilczek, Phys. Rev. Lett. 49, 957 (1982). [67] C.-T. Liang, Ph.D. thesis, Cambridge University (1995). [68] C.-T. Liang, C. G. Smith, D. R. Mace, J. T. Nicholls, J. E. F. Frost, M. Y. Simmons, A. R. Hamilton, D. A. Ritchie, and M. Pepper, Phys. Rev. B 53, R7596 (1996). [69] R. L. Willett, K. W. West, and L. N. Pfeiffer, Phys. Rev. Lett. 78, 4478 (2003). [70] W. Pan, H. L. St¨ormer, D. C. Tsui, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 90, 016801 (2003). [71] S. H. Simon, E. H. Rezayi, and M. V. Milovanovic, Phys. Rev. Lett. 91, 046804 (2003). [72] R. G. Clark, R. J. Nicholas, A. Usher, C. T. Foxon, and J. J. Harris, Surf. Sci. 170, 141 (1986). [73] S. Das Sarma and A. Pinczuk, Perspectives in Quantum Hall Effects (Wiley, New York 1997). [74] Bertram Schwarzschild, Physics Today, July 1993, page 17. [75] V. C. Karavolas and G. P. Triberis, Phys. Rev. B 63, 035313 (2001). [76] M. J. Kane, N. Apsley, D. A. Anderson, L. L. Taylor, and T. Kerr, J. Phys. C 18, 5629 (1985). [77] N. d’Ambrumenil and R. Morf, Surf. Sci. 361–362, 92 (1996). [78] P. J. Gee, F. M. Peeters, S. Uji, H Aoki, C. T. B. Foxon, and J. J. Harris, Phys. Rev. B 54, R14313 (1996). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34347 | - |
| dc.description.abstract | 1. Experimental evidence for Drude-Boltzmann transport-like
behavior in an AlGaN/GaN two-dimensional electron system We have measured the low-temperature electron transport properties in a AlxGa1−xN/GaN heterostructure. I shall report magnetotransport measurements on an AlGaN/GaN two dimensional electron gas over a wide range of temperature (0.3 K T 80 K). In the low-temperature regime, the magnetoresistivity oscillate as the magnetic field increases. At highest measurement temperature of T = 80 K, i.e., the quasiclassical regime, the longitudinal resistance is nominally magnetic field independent which is ascribed to evidence for Drude-Boltzmann-like transport in a 2D electron system. 2. Experimental Studies of Low-field and High-field Landau Quantization in Two-dimensional Electron Systems in GaAs/AlGaAs Heterostructures In Ando formalism, the assumption is that the background resistivity of 2DEG is constant and unchanged as the magnetic field increases. In our result we found that SdH formula is still valid although the oscillating amplitude becomes larger than the value of xx at B = 0. ii However, the same analysis for composite fermions of = 3/2 is not consistent with Ando formula. The reason may be that at = 3/2 the magnetic field is not enough to transform all the electrons to composite fermions. Therefore the behavior of this system can not be described by pure composite fermions or pure electrons. The effect in this regime should be described by the combinations of composite fermions and electrons. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T06:04:10Z (GMT). No. of bitstreams: 1 ntu-95-R93222018-1.pdf: 2287533 bytes, checksum: 6eda2fe73b0b6d814c6bc5fa639757ba (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 1 Introduction to two-dimensional electron systems 1
1.1 GaAs/AlGaAs Two-dimensional Electron System . . . . . . . 1 1.2 Modulation-doped Technique . . . . . . . . . . . . . . . . . . 3 1.3 GaN/AlGaN electron system . . . . . . . . . . . . . . . . . . . 3 1.4 Density of States . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Transport in two-dimensional electron systems 7 2.1 Classical Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Landau levels and Shubnikov-de Haas oscillation . . . . . . . . 9 2.3 Edge states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 The Integer Quantum Hall Effect . . . . . . . . . . . . . . . . 13 2.5 The Fractional Quantum Hall Effect . . . . . . . . . . . . . . 17 3 Experimental evidence for Drude-Boltzmann transport-like behavior in an AlGaN/GaN two-dimensional electron system 20 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 25 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Experimental Studies of Low-field and High-field Landau Quantization in Two-dimensional Electron Systems in GaAs/AlGaAs Heterostructures 31 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Composite Fermion . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3.1 Comparing integral quantum Hall effect and fractional quantum Hall effect . . . . . . . . . . . . . . . . . . . . 36 4.3.2 Shubnikov-de Haas oscillations of composite fermions . 38 4.3.3 Electrical transport of composite fermions at = 3/2 . 39 4.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 42 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5 Conclusions 50 Bibliography 52 | |
| dc.language.iso | en | |
| dc.subject | 二維電子 | zh_TW |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | 砷化鎵 | zh_TW |
| dc.subject | 2DEG | en |
| dc.subject | GaN | en |
| dc.subject | GaAs | en |
| dc.title | 外加磁場下二維氮化鎵和砷化鎵電子系統傳輸性質之研究 | zh_TW |
| dc.title | Magnetotransport properties in AlGaN/GaN and AlGaAs/GaAs two-dimensional electron systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳永芳(Yang-Fang Chen),張顏暉(Yuan-Huei Chang) | |
| dc.subject.keyword | 二維電子,砷化鎵,氮化鎵, | zh_TW |
| dc.subject.keyword | 2DEG,GaAs,GaN, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-06-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
