Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34337
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃銓珍(Chang-Jen Huang)
dc.contributor.authorYu-Hua Linen
dc.contributor.author林玉華zh_TW
dc.date.accessioned2021-06-13T06:03:43Z-
dc.date.available2008-07-03
dc.date.copyright2006-07-03
dc.date.issued2006
dc.date.submitted2006-06-19
dc.identifier.citationAbraham, D., Podar, K., Pacher, M., Kubicek, M., Welzel, N., Hemmings, B. A., Dilworth, S. M., Mischak, H., Kolch, W., and Baccarini, M. (2000). Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J Biol Chem 275, 22300-22304.
Agarwal-Mawal, A., Qureshi, H. Y., Cafferty, P. W., Yuan, Z., Han, D., Lin, R., and Paudel, H. K. (2003). 14-3-3 connects glycogen synthase kinase-3 beta to tau within a brain microtubule-associated tau phosphorylation complex. J Biol Chem 278, 12722-12728.
Althini, S., Usoskin, D., Kylberg, A., Kaplan, P. L., and Ebendal, T. (2004). Blocked MAP kinase activity selectively enhances neurotrophic growth responses. Mol Cell Neurosci 25, 345-354.
Basu, S., Totty, N. F., Irwin, M. S., Sudol, M., and Downward, J. (2003). Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14-3-3 and attenuation of p73-mediated apoptosis. Mol Cell 11, 11-23.
Bell, B., Xing, H., Yan, K., Gautam, N., and Muslin, A. J. (1999). KSR-1 binds to G-protein betagamma subunits and inhibits beta gamma-induced mitogen-activated protein kinase activation. J Biol Chem 274, 7982-7986.
Benton, R., Palacios, I. M., and St Johnston, D. (2002). Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation. Dev Cell 3, 659-671.
Bernards, A. (2003). GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim Biophys Acta 1603, 47-82.
Bernards, A., and Settleman, J. (2004). GAP control: regulating the regulators of small GTPases. Trends Cell Biol 14, 377-385.
Bhatia, K., Siraj, A. K., Hussain, A., Bu, R., and Gutierrez, M. I. (2003). The tumor suppressor gene 14-3-3 sigma is commonly methylated in normal and malignant lymphoid cells. Cancer Epidemiol Biomarkers Prev 12, 165-169.
Braselmann, S., and McCormick, F. (1995). Bcr and Raf form a complex in vivo via 14-3-3 proteins. Embo J 14, 4839-4848.
Bridges, D., and Moorhead, G. B. (2004). 14-3-3 proteins: a number of functions for a numbered protein. Sci STKE 2004, re10.
Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J., and Greenberg, M. E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857-868.
Bunney, T. D., van Walraven, H. S., and de Boer, A. H. (2001). 14-3-3 protein is a regulator of the mitochondrial and chloroplast ATP synthase. Proc Natl Acad Sci U S A 98, 4249-4254.
Cahill, C. M., Tzivion, G., Nasrin, N., Ogg, S., Dore, J., Ruvkun, G., and Alexander-Bridges, M. (2001). Phosphatidylinositol 3-kinase signaling inhibits DAF-16 DNA binding and function via 14-3-3-dependent and 14-3-3-independent pathways. J Biol Chem 276, 13402-13410.
Chang, H. C., and Rubin, G. M. (1997). 14-3-3 epsilon positively regulates Ras-mediated signaling in Drosophila. Genes Dev 11, 1132-1139.
Chaudhri, M., Scarabel, M., and Aitken, A. (2003). Mammalian and yeast 14-3-3 isoforms form distinct patterns of dimers in vivo. Biochem Biophys Res Commun 300, 679-685.
Chen, F., and Wagner, P. D. (1994). 14-3-3 proteins bind to histone and affect both histone phosphorylation and dephosphorylation. FEBS Lett 347, 128-132.
Chen, M. S., Ryan, C. E., and Piwnica-Worms, H. (2003). Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol 23, 7488-7497.
Cheng, K., Li, Z., Fu, W. Y., Wang, J. H., Fu, A. K., and Ip, N. Y. (2002). Pctaire1 interacts with p35 and is a novel substrate for Cdk5/p35. J Biol Chem 277, 31988-31993.
Chiang, S. H., Hwang, J., Legendre, M., Zhang, M., Kimura, A., and Saltiel, A. R. (2003). TCGAP, a multidomain Rho GTPase-activating protein involved in insulin-stimulated glucose transport. Embo J 22, 2679-2691.
Clark, G. J., Drugan, J. K., Rossman, K. L., Carpenter, J. W., Rogers-Graham, K., Fu, H., Der, C. J., and Campbell, S. L. (1997). 14-3-3 zeta negatively regulates raf-1 activity by interactions with the Raf-1 cysteine-rich domain. J Biol Chem 272, 20990-20993.
Cohen, P. T. (2002). Protein phosphatase 1--targeted in many directions. J Cell Sci 115, 241-256.
Cotelle, V., Meek, S. E., Provan, F., Milne, F. C., Morrice, N., and MacKintosh, C. (2000). 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. Embo J 19, 2869-2876.
Datta, S. R., Katsov, A., Hu, L., Petros, A., Fesik, S. W., Yaffe, M. B., and Greenberg, M. E. (2000). 14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 6, 41-51.
del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R., and Nunez, G. (1997). Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687-689.
Denhardt, D. T. (1996). Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Biochem J 318 ( Pt 3), 729-747.
Dougherty, M. K., and Morrison, D. K. (2004). Unlocking the code of 14-3-3. J Cell Sci 117, 1875-1884.
Eisenmann, K. M., Peng, J., Wallar, B. J., and Alberts, A. S. (2005). Rho GTPase-formin pairs in cytoskeletal remodelling. Novartis Found Symp 269, 206-218; discussion 219-230.
Fanger, G. R., Johnson, N. L., and Johnson, G. L. (1997). MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42. Embo J 16, 4961-4972.
Fantl, W. J., Muslin, A. J., Kikuchi, A., Martin, J. A., MacNicol, A. M., Gross, R. W., and Williams, L. T. (1994). Activation of Raf-1 by 14-3-3 proteins. Nature 371, 612-614.
Ferguson, A. T., Evron, E., Umbricht, C. B., Pandita, T. K., Chan, T. A., Hermeking, H., Marks, J. R., Lambers, A. R., Futreal, P. A., Stampfer, M. R., and Sukumar, S. (2000). High frequency of hypermethylation at the 14-3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci U S A 97, 6049-6054.
Ferl, R. J. (2004). 14-3-3 proteins: regulation of signal-induced events. Physiol Plant 120, 173-178.
Ford, J. C., al-Khodairy, F., Fotou, E., Sheldrick, K. S., Griffiths, D. J., and Carr, A. M. (1994). 14-3-3 protein homologs required for the DNA damage checkpoint in fission yeast. Science 265, 533-535.
Freed, E., Symons, M., Macdonald, S. G., McCormick, F., and Ruggieri, R. (1994). Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science 265, 1713-1716.
Fu, H., Xia, K., Pallas, D. C., Cui, C., Conroy, K., Narsimhan, R. P., Mamon, H., Collier, R. J., and Roberts, T. M. (1994). Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science 266, 126-129.
Gelperin, D., Weigle, J., Nelson, K., Roseboom, P., Irie, K., Matsumoto, K., and Lemmon, S. (1995). 14-3-3 proteins: potential roles in vesicular transport and Ras signaling in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 92, 11539-11543.
Giles, N., Forrest, A., and Gabrielli, B. (2003). 14-3-3 acts as an intramolecular bridge to regulate cdc25B localization and activity. J Biol Chem 278, 28580-28587.
Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., Martz, E., and Ben-Tal, N. (2003). ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19, 163-164.
Gohla, A., and Bokoch, G. M. (2002). 14-3-3 regulates actin dynamics by stabilizing phosphorylated cofilin. Curr Biol 12, 1704-1710.
Graeser, R., Gannon, J., Poon, R. Y., Dubois, T., Aitken, A., and Hunt, T. (2002). Regulation of the CDK-related protein kinase PCTAIRE-1 and its possible role in neurite outgrowth in Neuro-2A cells. J Cell Sci 115, 3479-3490.
Graves, P. R., Lovly, C. M., Uy, G. L., and Piwnica-Worms, H. (2001). Localization of human Cdc25C is regulated both by nuclear export and 14-3-3 protein binding. Oncogene 20, 1839-1851.
Green, A. J., Thompson, E. J., Stewart, G. E., Zeidler, M., McKenzie, J. M., MacLeod, M. A., Ironside, J. W., Will, R. G., and Knight, R. S. (2001). Use of 14-3-3 and other brain-specific proteins in CSF in the diagnosis of variant Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 70, 744-748.
Grozinger, C. M., and Schreiber, S. L. (2000). Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci U S A 97, 7835-7840.
Gu, J., Zhao, Y., Isaji, T., Shibukawa, Y., Ihara, H., Takahashi, M., Ikeda, Y., Miyoshi, E., Honke, K., and Taniguchi, N. (2004). Beta1,4-N-Acetylglucosaminyltransferase III down-regulates neurite outgrowth induced by costimulation of epidermal growth factor and integrins through the Ras/ERK signaling pathway in PC12 cells. Glycobiology 14, 177-186.
Hao, Y., Creson, T., Zhang, L., Li, P., Du, F., Yuan, P., Gould, T. D., Manji, H. K., and Chen, G. (2004). Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci 24, 6590-6599.
Henriksson, M. L., Francis, M. S., Peden, A., Aili, M., Stefansson, K., Palmer, R., Aitken, A., and Hallberg, B. (2002). A nonphosphorylated 14-3-3 binding motif on exoenzyme S that is functional in vivo. Eur J Biochem 269, 4921-4929.
Hermeking, H., Lengauer, C., Polyak, K., He, T. C., Zhang, L., Thiagalingam, S., Kinzler, K. W., and Vogelstein, B. (1997). 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1, 3-11.
Hoffman, G. R., Nassar, N., and Cerione, R. A. (2000). Structure of the Rho Family GTP-Binding Protein Cdc42 in Complex with the Multifunctional Regulator RhoGDI. Cell 100, 345-356.
Ichimura, T., Isobe, T., Okuyama, T., Takahashi, N., Araki, K., Kuwano, R., and Takahashi, Y. (1988). Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc Natl Acad Sci U S A 85, 7084-7088.
Ichimura, T., Isobe, T., Okuyama, T., Yamauchi, T., and Fujisawa, H. (1987). Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+,calmodulin-dependent protein kinase II. FEBS Lett 219, 79-82.
Irie, K., Gotoh, Y., Yashar, B. M., Errede, B., Nishida, E., and Matsumoto, K. (1994). Stimulatory effects of yeast and mammalian 14-3-3 proteins on the Raf protein kinase. Science 265, 1716-1719.
Janssens, V., and Goris, J. (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353, 417-439.
Jaumot, M., and Hancock, J. F. (2001). Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Oncogene 20, 3949-3958.
Jones, D. H., Ley, S., and Aitken, A. (1995). Isoforms of 14-3-3 protein can form homo- and heterodimers in vivo and in vitro: implications for function as adapter proteins. FEBS Lett 368, 55-58.
Joneson, T., Fulton, J. A., Volle, D. J., Chaika, O. V., Bar-Sagi, D., and Lewis, R. E. (1998). Kinase suppressor of Ras inhibits the activation of extracellular ligand-regulated (ERK) mitogen-activated protein (MAP) kinase by growth factors, activated Ras, and Ras effectors. J Biol Chem 273, 7743-7748.
Joubes, J., Chevalier, C., Dudits, D., Heberle-Bors, E., Inze, D., Umeda, M., and Renaudi, J. P. (2000). CDK-related protein kinases in plants. Plant Mol Biol 43, 607-620.
Kim, H. S., Yumkham, S., Kim, S. H., Yea, K., Shin, Y. C., Ryu, S. H., and Suh, P. G. (2006). Secretin induces neurite outgrowth of PC12 through cAMP-mitogen-activated protein kinase pathway. Exp Mol Med 38, 85-93.
Kockel, L., Vorbruggen, G., Jackle, H., Mlodzik, M., and Bohmann, D. (1997). Requirement for Drosophila 14-3-3 zeta in Raf-dependent photoreceptor development. Genes Dev 11, 1140-1147.
Koskinen, H., Krasnov, A., Rexroad, C., Gorodilov, Y., Afanasyev, S., and Molsa, H. (2004). The 14-3-3 proteins in the teleost fish rainbow trout (Oncorhynchus mykiss). J Exp Biol 207, 3361-3368.
Laronga, C., Yang, H. Y., Neal, C., and Lee, M. H. (2000). Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression. J Biol Chem 275, 23106-23112.
Leevers, S. J., Paterson, H. F., and Marshall, C. J. (1994). Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369, 411-414.
Li, W., Skoulakis, E. M., Davis, R. L., and Perrimon, N. (1997). The Drosophila 14-3-3 protein Leonardo enhances Torso signaling through D-Raf in a Ras 1-dependent manner. Development 124, 4163-4171.
Lin, Y., Wang, Y., Zhu, J. K., and Yang, Z. (1996). Localization of a Rho GTPase Implies a Role in Tip Growth and Movement of the Generative Cell in Pollen Tubes. Plant Cell 8, 293-303.
Liu, D., Bienkowska, J., Petosa, C., Collier, R. J., Fu, H., and Liddington, R. (1995). Crystal structure of the zeta isoform of the 14-3-3 protein. Nature 376, 191-194.
Lizcano, J. M., Morrice, N., and Cohen, P. (2000). Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155. Biochem J 349, 547-557.
Lopez-Girona, A., Furnari, B., Mondesert, O., and Russell, P. (1999). Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397, 172-175.
Luo, L., Liao, Y. J., Jan, L. Y., and Jan, Y. N. (1994). Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 8, 1787-1802.
Margolis, S. S., Walsh, S., Weiser, D. C., Yoshida, M., Shenolikar, S., and Kornbluth, S. (2003). PP1 control of M phase entry exerted through 14-3-3-regulated Cdc25 dephosphorylation. Embo J 22, 5734-5745.
Masters, S. C., Pederson, K. J., Zhang, L., Barbieri, J. T., and Fu, H. (1999). Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa. Biochemistry 38, 5216-5221.
Michaud, N. R., Therrien, M., Cacace, A., Edsall, L. C., Spiegel, S., Rubin, G. M., and Morrison, D. K. (1997). KSR stimulates Raf-1 activity in a kinase-independent manner. Proc Natl Acad Sci U S A 94, 12792-12796.
Miura, T., Tanaka, S., Seichi, A., Arai, M., Goto, T., Katagiri, H., Asano, T., Oda, H., and Nakamura, K. (2000). Partial functional recovery of paraplegic rat by adenovirus-mediated gene delivery of constitutively active MEK1. Exp Neurol 166, 115-126.
Moore, B. W. a. P., V. J. (1967). Specific Acid Proteins in the Nervous System. Eglewood Cliffs, New Jersey: Prentice-Hall.
Moorhead, G., Douglas, P., Cotelle, V., Harthill, J., Morrice, N., Meek, S., Deiting, U., Stitt, M., Scarabel, M., Aitken, A., and MacKintosh, C. (1999). Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins. Plant J 18, 1-12.
Morii, N., Kumagai, N., Nur, E. K. M. S., Narumiya, S., and Maruta, H. (1993). rho GAP of 28 kDa (GAP2), but not of 190 kDa (p190), requires Asp65 and Asp67 of rho GTPase for its activation. J Biol Chem 268, 27160-27163.
Morton, D. G., Shakes, D. C., Nugent, S., Dichoso, D., Wang, W., Golden, A., and Kemphues, K. J. (2002). The Caenorhabditis elegans par-5 gene encodes a 14-3-3 protein required for cellular asymmetry in the early embryo. Dev Biol 241, 47-58.
Muller, J., Cacace, A. M., Lyons, W. E., McGill, C. B., and Morrison, D. K. (2000). Identification of B-KSR1, a novel brain-specific isoform of KSR1 that functions in neuronal signaling. Mol Cell Biol 20, 5529-5539.
Muslin, A. J., Tanner, J. W., Allen, P. M., and Shaw, A. S. (1996). Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889-897.
Muslin, A. J., and Xing, H. (2000). 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal 12, 703-709.
Obsil, T., Ghirlando, R., Klein, D. C., Ganguly, S., and Dyda, F. (2001). Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation. Cell 105, 257-267.
Obsilova, V., Herman, P., Vecer, J., Sulc, M., Teisinger, J., and Obsil, T. (2004). 14-3-3zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. J Biol Chem 279, 4531-4540.
Ory, S., Zhou, M., Conrads, T. P., Veenstra, T. D., and Morrison, D. K. (2003). Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14-3-3 binding sites. Curr Biol 13, 1356-1364.
Papin, C., Denouel-Galy, A., Laugier, D., Calothy, G., and Eychene, A. (1998). Modulation of kinase activity and oncogenic properties by alternative splicing reveals a novel regulatory mechanism for B-Raf. J Biol Chem 273, 24939-24947.
Pastorino, J. G., Tafani, M., and Farber, J. L. (1999). Tumor necrosis factor induces phosphorylation and translocation of BAD through a phosphatidylinositide-3-OH kinase-dependent pathway. J Biol Chem 274, 19411-19416.
Pearson, R. B., and Kemp, B. E. (1991). Protein kinase phosphorylation site sequences and consensus specificity motifs: tabulations. Methods Enzymol 200, 62-81.
Perego, L., and Berruti, G. (1997). Molecular cloning and tissue-specific expression of the mouse homologue of the rat brain 14-3-3 theta protein: characterization of its cellular and developmental pattern of expression in the male germ line. Mol Reprod Dev 47, 370-379.
Petosa, C., Masters, S. C., Bankston, L. A., Pohl, J., Wang, B., Fu, H., and Liddington, R. C. (1998). 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J Biol Chem 273, 16305-16310.
Rittinger, K., Budman, J., Xu, J., Volinia, S., Cantley, L. C., Smerdon, S. J., Gamblin, S. J., and Yaffe, M. B. (1999). Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell 4, 153-166.
Sanchez, Y., Wong, C., Thoma, R. S., Richman, R., Wu, Z., Piwnica-Worms, H., and Elledge, S. J. (1997). Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277, 1497-1501.
Santoro, M. M., Gaudino, G., and Marchisio, P. C. (2003a). The MSP receptor regulates alpha6beta4 and alpha3beta1 integrins via 14-3-3 proteins in keratinocyte migration. Dev Cell 5, 257-271.
Santoro, M. M., Gaudino, G., and Villa-Moruzzi, E. (2003b). Protein phosphatase 1 binds to phospho-Ser-1394 of the macrophage-stimulating protein receptor. Biochem J 376, 587-594.
Schmid, R. S., Pruitt, W. M., and Maness, P. F. (2000). A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis. J Neurosci 20, 4177-4188.
Schoenwaelder, S. M., and Burridge, K. (1999). Evidence for a calpeptin-sensitive protein-tyrosine phosphatase upstream of the small GTPase Rho. A novel role for the calpain inhibitor calpeptin in the inhibition of protein-tyrosine phosphatases. J Biol Chem 274, 14359-14367.
Seimiya, H., Sawada, H., Muramatsu, Y., Shimizu, M., Ohko, K., Yamane, K., and Tsuruo, T. (2000). Involvement of 14-3-3 proteins in nuclear localization of telomerase. Embo J 19, 2652-2661.
Shin, E. Y., Shin, K. S., Lee, C. S., Woo, K. N., Quan, S. H., Soung, N. K., Kim, Y. G., Cha, C. I., Kim, S. R., Park, D., et al. (2002). Phosphorylation of p85 beta PIX, a Rac/Cdc42-specific guanine nucleotide exchange factor, via the Ras/ERK/PAK2 pathway is required for basic fibroblast growth factor-induced neurite outgrowth. J Biol Chem 277, 44417-44430.
Stokoe, D., Macdonald, S. G., Cadwallader, K., Symons, M., and Hancock, J. F. (1994). Activation of Raf as a result of recruitment to the plasma membrane. Science 264, 1463-1467.
Sugimoto, T., Stewart, S., Han, M., and Guan, K. L. (1998). The kinase suppressor of Ras (KSR) modulates growth factor and Ras signaling by uncoupling Elk-1 phosphorylation from MAP kinase activation. Embo J 17, 1717-1727.
Suzuki, T., Mimuro, H., Miki, H., Takenawa, T., Sasaki, T., Nakanishi, H., Takai, Y., and Sasakawa, C. (2000). Rho family GTPase Cdc42 is essential for the actin-based motility of Shigella in mammalian cells. J Exp Med 191, 1905-1920.
Tang, N., He, M., O'Riordan, M. A., Farkas, C., Buck, K., Lemmon, V., and Bearer, C. F. (2006). Ethanol inhibits L1 cell adhesion molecule activation of mitogen-activated protein kinases. J Neurochem 96, 1480-1490.
Therrien, M., Michaud, N. R., Rubin, G. M., and Morrison, D. K. (1996). KSR modulates signal propagation within the MAPK cascade. Genes Dev 10, 2684-2695.
Thorson, J. A., Yu, L. W., Hsu, A. L., Shih, N. Y., Graves, P. R., Tanner, J. W., Allen, P. M., Piwnica-Worms, H., and Shaw, A. S. (1998). 14-3-3 proteins are required for maintenance of Raf-1 phosphorylation and kinase activity. Mol Cell Biol 18, 5229-5238.
Tien, A. C., Hsei, H. Y., and Chien, C. T. (1999). Dynamic expression and cellular localization of the drosophila 14-3-3epsilon during embryonic development. Mech Dev 81, 209-212.
Toker, A., Ellis, C. A., Sellers, L. A., and Aitken, A. (1990). Protein kinase C inhibitor proteins. Purification from sheep brain and sequence similarity to lipocortins and 14-3-3 protein. Eur J Biochem 191, 421-429.
Toyo-oka, K., Shionoya, A., Gambello, M. J., Cardoso, C., Leventer, R., Ward, H. L., Ayala, R., Tsai, L. H., Dobyns, W., Ledbetter, D., et al. (2003). 14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nat Genet 34, 274-285.
Toyooka, K., Muratake, T., Watanabe, H., Hayashi, S., Ichikawa, T., Usui, H., Washiyama, K., Kumanishi, T., and Takahashi, Y. (2002). Isolation and structure of the mouse 14-3-3 eta chain gene and the distribution of 14-3-3 eta mRNA in the mouse brain. Brain Res Mol Brain Res 100, 13-20.
Van Aelst, L., and D'Souza-Schorey, C. (1997). Rho GTPases and signaling networks. Genes Dev 11, 2295-2322.
Van Der Hoeven, P. C., Van Der Wal, J. C., Ruurs, P., Van Dijk, M. C., and Van Blitterswijk, J. (2000). 14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation. Biochem J 345 Pt 2, 297-306.
van Hemert, M. J., Niemantsverdriet, M., Schmidt, T., Backendorf, C., and Spaink, H. P. (2004). Isoform-specific differences in rapid nucleocytoplasmic shuttling cause distinct subcellular distributions of 14-3-3 sigma and 14-3-3 zeta. J Cell Sci 117, 1411-1420.
van Hemert, M. J., Steensma, H. Y., and van Heusden, G. P. (2001). 14-3-3 proteins: key regulators of cell division, signalling and apoptosis. Bioessays 23, 936-946.
van Heusden, G. P., Griffiths, D. J., Ford, J. C., Chin, A. W. T. F., Schrader, P. A., Carr, A. M., and Steensma, H. Y. (1995). The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue. Eur J Biochem 229, 45-53.
van Heusden, G. P., van der Zanden, A. L., Ferl, R. J., and Steensma, H. Y. (1996). Four Arabidopsis thaliana 14-3-3 protein isoforms can complement the lethal yeast bmh1 bmh2 double disruption. FEBS Lett 391, 252-256.
Vincenz, C., and Dixit, V. M. (1996). 14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules. J Biol Chem 271, 20029-20034.
Walowitz, J. L., and Roth, J. A. (1999). Activation of ERK1 and ERK2 is required for manganese-induced neurite outgrowth in rat pheochromocytoma (PC12) cells. J Neurosci Res 57, 847-854.
Wang, D. Z., Nur, E. K. M. S., Tikoo, A., Montague, W., and Maruta, H. (1997). The GTPase and Rho GAP domains of p190, a tumor suppressor protein that binds the M(r) 120,000 Ras GAP, independently function as anti-Ras tumor suppressors. Cancer Res 57, 2478-2484.
Watanabe, H., Yokozeki, T., Yamazaki, M., Miyazaki, H., Sasaki, T., Maehama, T., Itoh, K., Frohman, M. A., and Kanaho, Y. (2004). Essential role for phospholipase D2 activation downstream of ERK MAP kinase in nerve growth factor-stimulated neurite outgrowth from PC12 cells. J Biol Chem 279, 37870-37877.
Wilker, E. W., Grant, R. A., Artim, S. C., and Yaffe, M. B. (2005). A structural basis for 14-3-3sigma functional specificity. J Biol Chem 280, 18891-18898.
Williams, T. M., Ndifor, A. M., Near, J. T., and Reams-Brown, R. R. (2000). Lead enhances NGF-induced neurite outgrowth in PC12 cells by potentiating ERK/MAPK activation. Neurotoxicology 21, 1081-1089.
Xiao, B., Smerdon, S. J., Jones, D. H., Dodson, G. G., Soneji, Y., Aitken, A., and Gamblin, S. J. (1995). Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature 376, 188-191.
Xing, H., Kornfeld, K., and Muslin, A. J. (1997). The protein kinase KSR interacts with 14-3-3 protein and Raf. Curr Biol 7, 294-300.
Yaffe, M. B. (2002). How do 14-3-3 proteins work?-- Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 513, 53-57.
Yaffe, M. B., Rittinger, K., Volinia, S., Caron, P. R., Aitken, A., Leffers, H., Gamblin, S. J., Smerdon, S. J., and Cantley, L. C. (1997). The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961-971.
Yang, H. Y., Wen, Y. Y., Chen, C. H., Lozano, G., and Lee, M. H. (2003). 14-3-3 sigma positively regulates p53 and suppresses tumor growth. Mol Cell Biol 23, 7096-7107.
Yang, J., Winkler, K., Yoshida, M., and Kornbluth, S. (1999). Maintenance of G2 arrest in the Xenopus oocyte: a role for 14-3-3-mediated inhibition of Cdc25 nuclear import. Embo J 18, 2174-2183.
Yu, W., Fantl, W. J., Harrowe, G., and Williams, L. T. (1998). Regulation of the MAP kinase pathway by mammalian Ksr through direct interaction with MEK and ERK. Curr Biol 8, 56-64.
Zalcman, G., Dorseuil, O., Garcia-Ranea, J. A., Gacon, G., and Camonis, J. (1999). RhoGAPs and RhoGDIs, (His)stories of two families. Prog Mol Subcell Biol 22, 85-113.
Zha, J., Harada, H., Yang, E., Jockel, J., and Korsmeyer, S. J. (1996). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87, 619-628.
Zhai, H., Nakade, K., Oda, M., Mitsumoto, Y., Akagi, M., Sakurai, J., and Fukuyama, Y. (2005). Honokiol-induced neurite outgrowth promotion depends on activation of extracellular signal-regulated kinases (ERK1/2). Eur J Pharmacol 516, 112-117.
Zugasti, O., Rul, W., Roux, P., Peyssonnaux, C., Eychene, A., Franke, T. F., Fort, P., and Hibner, U. (2001). Raf-MEK-Erk cascade in anoikis is controlled by Rac1 and Cdc42 via Akt. Mol Cell Biol 21, 6706-6717.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34337-
dc.description.abstract14-3-3是一種酸性蛋白,大小約25-30kDa,主要存在於腦部和神經性統中。它的功能廣泛,包含代謝,細胞週期的控制,訊息傳導,細胞凋亡,蛋白運送,轉錄,壓力反應及惡性轉型等。目前已知它和超過兩百種的受質結合,涵蓋細胞內幾乎所有的反應。本實驗根據其它物種比對所得之14-3-3序列來選殖斑馬魚14-3-3基因,並且收集資料庫中之其它已知的斑馬魚14-3-3序列,最後得到九種斑馬魚14-3-3蛋白家族成員,包括ζ,θ,β1,β2,β3,η,γ,ε1,以及ε2。經過胺基酸排序分析,親緣演化樹分析,基因結構分析,以及成對比較之結果,推論ζ,θ,β1,β2,及β3親緣關係較接近,屬於第一群;η和γ為第二群;ε1及ε2則為第三群。利用全胚胎原位雜交法分析斑馬魚14-3-3家族之mRNA在受精後六小時到一百二十小時的胚胎表現分佈位置,結果發現它們在腦部之表現量最多,其次則是視網膜,鰓,以及腸道。將斑馬魚14-3-3的九個基因以顯微注射方式表現在斑馬魚早期胚胎中,結果在受精後48小時,只有14-3-3 β3可觀察到明顯的神經纖維生長現象。將14-3-3 β3作R56A及R60A雙突變以破壞14-3-3和受質的結合,或是將14-3-3 β3與蛋白質去磷酸酶PP2A一同表現以使受質去磷酸化,均可有效抑制神經纖維生長的情形。而隨著MEK (MAPKK) 抑制劑PD98059的增加,神經纖維生長的抑制越明顯。將斑馬魚的Rho GTPase家族中的Rac-1及Cdc42均作T17N突變,和14-3-3 β3一同注射到斑馬魚胚胎中,也是隨著注射劑量增加,抑制神經纖維生長的效果越明顯。故由以上結果,推測斑馬魚14-3-3 β3和受質結合後,是經由MEK及MAPK路徑而使神經纖維生長,然而Rac-1及Cdc42在路徑中作用的位置則尚未明瞭。zh_TW
dc.description.abstract14-3-3 family proteins are adaptor proteins that specifically bind to a discrete phosphoserine or phosphothreonine motif in the substrate proteins. They play important roles in metabolism, cell-cycle control, signal transduction, apoptosis, protein trafficking, transcription, stress responses, and malignant transformation. They are found only in eukaryotes. In this study, I cloned and characterized 9 genes encoding nine members of zebrafish 14-3-3 family, designated theta (θ), zeta (ζ), beta1 (β1), beta2 (β2), beta3 (β3), eta (η), gamma (γ), epsilon1 (ε1), epsilon2 (ε2). Amino acid sequence alignment and phylogenetic tree analysis indicated that all zebrafish 14-3-3 members can be divided into three group. The ζ, θ, β1, β2 and β3 belong to Group I, while η and γ Group II. In addition, ε1 and ε2 are the third. Using whole-mount in situ hybridization to analyze the mRNA expression profile of zebrafish 14-3-3 family from 6 hpf to 120 hpf, the signal was found primarily in the brain while moderate in retina, gill and gut. Expression of GFP-fusion protein of each isoform of zebrafish 14-3-3 family by a neuron-specific HuC promoter in zebrafish embryos indicated that only 14-3-3-beta3 isoform could promote neurite outgrowth. A double mutant of 14-3-3-beta3 (R56A and R60A) abolished this effect. Coinjection of pHuC-14-3-3-beta3-HuC-GFP with protein phosphatase 2A (PP2A), Cdc42 dominant negative form (Cdc42-T17N), Rac1 dominant negative form (Rac1-T17N) and MAPKK inhibitor PD98059, respectively, reduced the neurite outgrowth induced by 14-3-3-beta3.en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:03:43Z (GMT). No. of bitstreams: 1
ntu-95-R93b46003-1.pdf: 2304936 bytes, checksum: c0b576bb3a8c39053ef2c7b47b8fdd88 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄
中文摘要…………………………………………………………...….......................
i
英文摘要 (Abstract)…………………………………………….….........................
ii
縮寫表………………………………………………………….......….......................
iii
目錄…………………………………………………………...........….......................
iv
表目錄………………………………………………………………………………..
vi
圖目錄………………………………………………………………………………..
vii
壹、序言……………………………………………………………..........................
-1-
一、14-3-3的基本背景………………………………………………………….
-1-
二、14-3-3的蛋白質結構……………………………………………………….
-2-
三、14-3-3蛋白的作用機制…………………………………………………….
-4-
四、14-3-3目標結合的調控…………………………………………………….
-7-
五、不同物種間的14-3-3蛋白家族……………………………………………
-11-
六、14-3-3蛋白家族在不同組織的表現分布………………………………….
-11-
七、14-3-3對於人類神經性及腫瘤相關疾病的影響………………………….
-12-
八、Rho GTPase 家族……………………………………………………...…...
-14-
九、研究目的及策略……………………………………………………………
-15-
貳、實驗材料與方法………………………………………………………………..
-17-
I. 實驗材料……………………………………………………………....………
-17-
II. 實驗方法……………………………………………………………………..
-17-
一、斑馬魚14-3-3基因之選殖…………………………………………………
-18-
二、斑馬魚胚胎之顯微注射…………………………………………………….
-23-
三、斑馬魚14-3-3 mRNA在早期胚胎發育之表現:RNA全胚胎原位雜交 (RNA whole-mount in situ hybridization) ………………………………….
-25-
參、結果…………………………………………………………..............................
-32-
I. 斑馬魚14-3-3基因家族序列………………………………………………...
-32-
一、選殖及分析斑馬魚14-3-3基因家族………………………………………
-32-
二、斑馬魚14-3-3基因家族成員的親緣演化關係……………………………
-33-
II. 斑馬魚14-3-3在不同胚胎發育時期的表現位置及表現量………………..
-34-
一、斑馬魚14-3-3 ζ mRNA的表現分布……………………………………….
-34-
二、斑馬魚14-3-3 θ mRNA的表現分布……………………………………….
-35-
三、斑馬魚14-3-3 β1 mRNA的表現分布……………………………………..
-36-
四、斑馬魚14-3-3 β2 mRNA的表現分布……………………………………..
-36-
五、斑馬魚14-3-3 β3 mRNA的表現分布……………………………………..
-37-
六、斑馬魚14-3-3 η mRNA的表現分布……………………………................
-38-
七、斑馬魚14-3-3 γ mRNA的表現分布…………………………….................
-39-
八、斑馬魚14-3-3 ε1 mRNA的表現分布……………………………………..
-40-
v
九、斑馬魚14-3-3 ε2 mRNA的表現分布…………………………………..…
-40-
十、綜合斑馬魚14-3-3各isoform的表現分布………………………………..
-41-
III. 斑馬魚14-3-3基因家族影響神經纖維生長及其相關基因……………….
-42-
一、過度表現斑馬魚14-3-3基因家族…………………………….……………
-42-
二、斑馬魚14-3-3基因家族過度表現所導致神經纖維生長之比例…………
-43-
三、抑制斑馬魚14-3-3 β3 和受質的結合會減少神經纖維的生長…………..
-44-
四、MEK抑制劑可突變減少斑馬魚14-3-3 β3所導致之神經纖維生長的情形……………………………………………………………………………
-45-
五、Cdc42及Rac-1的突變會抑制斑馬魚14-3-3 β3所導致之神經纖維生長的情形……………………………………………………………………....
-45-
肆、討論……………………………………………………………………………..
-47-
dc.language.isozh-TW
dc.title14-3-3基因家族在斑馬魚胚胎發育之表現及其過度表現所引發之神經纖維生長zh_TW
dc.titleGene expression of 14-3-3 family during zebrafish development and their overexpressions lead to the promotion of neurite outgrowthen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃鵬鵬(Pung-Pung Hwang),黃聲蘋(Sheng-Ping L. Hwang)
dc.subject.keyword14-3-3,斑馬魚,神經纖維,zh_TW
dc.subject.keyword14-3-3,zebrafish,neurite outgrowth,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2006-06-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
2.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved