Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34325
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃銓珍(Chang-Jen Huang)
dc.contributor.authorKuan-Lun Huangen
dc.contributor.author黃冠綸zh_TW
dc.date.accessioned2021-06-13T06:03:10Z-
dc.date.available2008-07-03
dc.date.copyright2006-07-03
dc.date.issued2006
dc.date.submitted2006-06-20
dc.identifier.citationBraisted, J. E., McLaughlin, T., Wang, H. U., Friedman, G. C., Anderson, D. J., and O'Leary D, D. (1997). Graded and lamina-specific distributions of ligands of EphB receptor tyrosine kinases in the developing retinotectal system. Dev Biol 191, 14-28.
Brambilla, R., Schnapp, A., Casagranda, F., Labrador, J. P., Bergemann, A. D., Flanagan, J. G., Pasquale, E. B., and Klein, R. (1995). Membrane-bound LERK2 ligand can signal through three different Eph-related receptor tyrosine kinases. Embo J 14, 3116-3126.
Brenner, M., and Messing, A. (1996). GFAP Transgenic Mice. Methods 10, 351-364.
Bruce, V., Olivieri, G., Eickelberg, O., and Miescher, G. C. (1999). Functional activation of EphA5 receptor does not promote cell proliferation in the aberrant EphA5 expressing human glioblastoma U-118 MG cell line. Brain Res 821, 169-176.
Bruckner, K., and Klein, R. (1998). Signaling by Eph receptors and their ephrin ligands. Curr Opin Neurobiol 8, 375-382.
Burridge, K. (1999). Crosstalk between Rac and Rho. Science 283, 2028-2029.
Castellani, V., Yue, Y., Gao, P. P., Zhou, R., and Bolz, J. (1998). Dual action of a ligand for Eph receptor tyrosine kinases on specific populations of axons during the development of cortical circuits. J Neurosci 18, 4663-4672.
Cerione, R. A., and Zheng, Y. (1996). The Dbl family of oncogenes. Curr Opin Cell Biol 8, 216-222.
Chan, J., Mably, J. D., Serluca, F. C., Chen, J. N., Goldstein, N. B., Thomas, M. C., Cleary, J. A., Brennan, C., Fishman, M. C., and Roberts, T. M. (2001). Morphogenesis of prechordal plate and notochord requires intact Eph/ephrin B signaling. Dev Biol 234, 470-482.
Chitnis, A. B. (1999). Control of neurogenesis—Lessons from frogs, fish and flies. Curr Opin Neurobiol 9, pp. 18–25.
Connor, R. J., Menzel, P., and Pasquale, E. B. (1998). Expression and tyrosine phosphorylation of Eph receptors suggest multiple mechanisms in patterning of the visual system. Dev Biol 193, 21-35.
Cowan, C. A., and Henkemeyer, M. (2001). The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413, 174-179.
Cowan, C. W., Shao, Y. R., Sahin, M., Shamah, S. M., Lin, M. Z., Greer, P. L., Gao, S., Griffith, E. C., Brugge, J. S., and Greenberg, M. E. (2005). Vav family GEFs link activated Ephs to endocytosis and axon guidance. Neuron 46, 205-217.
Debreceni, B., Gao, Y., Guo, F., Zhu, K., Jia, B., and Zheng, Y. (2004). Mechanisms of guanine nucleotide exchange and Rac-mediated signaling revealed by a dominant negative trio mutant. J Biol Chem 279, 3777-3786.
Drescher, U., Kremoser, C., Handwerker, C., Loschinger, J., Noda, M., and Bonhoeffer, F. (1995). In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359-370.
Ellis, C., Kasmi, F., Ganju, P., Walls, E., Panayotou, G., and Reith, A. D. (1996). A juxtamembrane autophosphorylation site in the Eph family receptor tyrosine kinase, Sek, mediates high affinity interaction with p59fyn. Oncogene 12, 1727-1736.
Elowe, S., Holland, S. J., Kulkarni, S., and Pawson, T. (2001). Downregulation of the Ras-mitogen-activated protein kinase pathway by the EphB2 receptor tyrosine kinase is required for ephrin-induced neurite retraction. Mol Cell Biol 21, 7429-7441.
Feldheim, D. A., Vanderhaeghen, P., Hansen, M. J., Frisen, J., Lu, Q., Barbacid, M., and Flanagan, J. G. (1998). Topographic guidance labels in a sensory projection to the forebrain. Neuron 21, 1303-1313.
Flanagan, J. G., and Vanderhaeghen, P. (1998). The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21, 309-345.
Gale, N. W., Holland, S. J., Valenzuela, D. M., Flenniken, A., Pan, L., Ryan, T. E., Henkemeyer, M., Strebhardt, K., Hirai, H., Wilkinson, D. G., et al. (1996). Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartmentalized during embryogenesis. Neuron 17, 9-19.
Galou, M., Pournin, S., Ensergueix, D., Ridet, J. L., Tchelingerian, J. L., Lossouarn, L., Privat, A., Babinet, C., and Dupouey, P. (1994). Normal and pathological expression of GFAP promoter elements in transgenic mice. Glia 12, 281-293.
Gao, P. P., Sun, C. H., Zhou, X. F., DiCicco-Bloom, E., and Zhou, R. (2000). Ephrins stimulate or inhibit neurite outgrowth and survival as a function of neuronal cell type. J Neurosci Res 60, 427-436.
Gao, P. P., Yue, Y., Cerretti, D. P., Dreyfus, C., and Zhou, R. (1999). Ephrin-dependent growth and pruning of hippocampal axons. Proc Natl Acad Sci U S A 96, 4073-4077.
Gao, P. P., Yue, Y., Zhang, J. H., Cerretti, D. P., Levitt, P., and Zhou, R. (1998). Regulation of thalamic neurite outgrowth by the Eph ligand ephrin-A5: implications in the development of thalamocortical projections. Proc Natl Acad Sci U S A 95, 5329-5334.
Gao, P. P., Zhang, J. H., Yokoyama, M., Racey, B., Dreyfus, C. F., Black, I. B., and Zhou, R. (1996). Regulation of topographic projection in the brain: Elf-1 in the hippocamposeptal system. Proc Natl Acad Sci U S A 93, 11161-11166.
Good, P. J. (1995). A conserved family of elav-like genes in vertebrates. Proc Natl Acad Sci U S A 92, 4557-4561.
Gu, C., and Park, S. (2001). The EphA8 receptor regulates integrin activity through p110gamma phosphatidylinositol-3 kinase in a tyrosine kinase activity-independent manner. Mol Cell Biol 21, 4579-4597.
Habets, G. G., Scholtes, E. H., Zuydgeest, D., van der Kammen, R. A., Stam, J. C., Berns, A., and Collard, J. G. (1994). Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for Rho-like proteins. Cell 77, 537-549.
Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509-514.
Holash, J. A., and Pasquale, E. B. (1995). Polarized expression of the receptor protein tyrosine kinase Cek5 in the developing avian visual system. Dev Biol 172, 683-693.
Holland, S. J., Peles, E., Pawson, T., and Schlessinger, J. (1998). Cell-contact-dependent signalling in axon growth and guidance: Eph receptor tyrosine kinases and receptor protein tyrosine phosphatase beta. Curr Opin Neurobiol 8, 117-127.
Hornberger, M. R., Dutting, D., Ciossek, T., Yamada, T., Handwerker, C., Lang, S., Weth, F., Huf, J., Wessel, R., Logan, C., et al. (1999). Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. Neuron 22, 731-742.
Huynh-Do, U., Stein, E., Lane, A. A., Liu, H., Cerretti, D. P., and Daniel, T. O. (1999). Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through alphavbeta3 and alpha5beta1 integrins. Embo J 18, 2165-2173.
J. Liu, J. D., A. Szabo, M. Rosenfeld, J. Huber and H. Furneaux (1995). Paraneoplastic encephalomyelitis antigens bind to the AU-rich elements of mRNA. Neurology 45, pp. 544–550.
Jessen, K. R., and Mirsky, R. (1985). Glial fibrillary acidic polypeptides in peripheral glia. Molecular weight, heterogeneity and distribution. J Neuroimmunol 8, 377-393.
Jessen, K. R., Morgan, L., Stewart, H. J., and Mirsky, R. (1990). Three markers of adult non-myelin-forming Schwann cells, 217c(Ran-1), A5E3 and GFAP: development and regulation by neuron-Schwann cell interactions. Development 109, 91-103.
Kalo, M. S., and Pasquale, E. B. (1999). Multiple in vivo tyrosine phosphorylation sites in EphB receptors. Biochemistry 38, 14396-14408.
Kalo, M. S., Yu, H. H., and Pasquale, E. B. (2001). In vivo tyrosine phosphorylation sites of activated ephrin-B1 and ephB2 from neural tissue. J Biol Chem 276, 38940-38948.
Kim, C. H., Ueshima, E., Muraoka, O., Tanaka, H., Yeo, S. Y., Huh, T. L., and Miki, N. (1996). Zebrafish elav/HuC homologue as a very early neuronal marker. Neurosci Lett 216, 109-112.
Knoll, B., and Drescher, U. (2004). Src family kinases are involved in EphA receptor-mediated retinal axon guidance. J Neurosci 24, 6248-6257.
Kozma, R., Sarner, S., Ahmed, S., and Lim, L. (1997). Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol 17, 1201-1211.
Krull, C. E., Lansford, R., Gale, N. W., Collazo, A., Marcelle, C., Yancopoulos, G. D., Fraser, S. E., and Bronner-Fraser, M. (1997). Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr Biol 7, 571-580.
Kudoh, T., Tsang, M., Hukriede, N.A., Chen, X., Dedekian, M., Clarke, C.J., Kiang, A., Schultz, S., Epstein, J.A., Toyama, R., and Dawid, I.B. (2001). A gene expression screen in zebrafish embryogenesis. ZFIN Direct Data Submission
Kuhn, T. B., Brown, M. D., Wilcox, C. L., Raper, J. A., and Bamburg, J. R. (1999). Myelin and collapsin-1 induce motor neuron growth cone collapse through different pathways: inhibition of collapse by opposing mutants of rac1. J Neurosci 19, 1965-1975.
Kullander, K., and Klein, R. (2002). Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3, 475-486.
Levine, T. D., Gao, F., King, P. H., Andrews, L. G., and Keene, J. D. (1993). Hel-N1: an autoimmune RNA-binding protein with specificity for 3' uridylate-rich untranslated regions of growth factor mRNAs. Mol Cell Biol 13, 3494-3504.
Lin, D., Gish, G. D., Songyang, Z., and Pawson, T. (1999). The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. J Biol Chem 274, 3726-3733.
Lu, Q., Sun, E. E., Klein, R. S., and Flanagan, J. G. (2001). Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell 105, 69-79.
Luo, L. (2000). Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci 1, 173-180.
Martinez, A., and Soriano, E. (2005). Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system. Brain Res Brain Res Rev 49, 211-226.
Mellitzer, G., Xu, Q., and Wilkinson, D. G. (1999). Eph receptors and ephrins restrict cell intermingling and communication. Nature 400, 77-81.
Miao, H., Burnett, E., Kinch, M., Simon, E., and Wang, B. (2000). Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol 2, 62-69.
Miao, H., Wei, B. R., Peehl, D. M., Li, Q., Alexandrou, T., Schelling, J. R., Rhim, J. S., Sedor, J. R., Burnett, E., and Wang, B. (2001). Activation of EphA receptor tyrosine kinase inhibits the Ras/MAPK pathway. Nat Cell Biol 3, 527-530.
Monschau, B., Kremoser, C., Ohta, K., Tanaka, H., Kaneko, T., Yamada, T., Handwerker, C., Hornberger, M. R., Loschinger, J., Pasquale, E. B., et al. (1997). Shared and distinct functions of RAGS and ELF-1 in guiding retinal axons. Embo J 16, 1258-1267.
Moreno-Flores, M. T., Martin-Aparicio, E., Avila, J., Diaz-Nido, J., and Wandosell, F. (2002). Ephrin-B1 promotes dendrite outgrowth on cerebellar granule neurons. Mol Cell Neurosci 20, 429-446.
Munoz, L. M., Zayachkivsky, A., Kunz, R. B., Hunt, J. M., Wang, G., and Scott, S. A. (2005). Ephrin-A5 inhibits growth of embryonic sensory neurons. Dev Biol 283, 397-408.
Murai, K. K., and Pasquale, E. B. (2005). New exchanges in eph-dependent growth cone dynamics. Neuron 46, 161-163.
Nakamoto, M., Cheng, H. J., Friedman, G. C., McLaughlin, T., Hansen, M. J., Yoon, C. H., O'Leary, D. D., and Flanagan, J. G. (1996). Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell 86, 755-766.
Nielsen, A. L., and Jorgensen, A. L. (2003). Structural and functional characterization of the zebrafish gene for glial fibrillary acidic protein, GFAP. Gene 310, 123-132.
Nolte, C., Matyash, M., Pivneva, T., Schipke, C. G., Ohlemeyer, C., Hanisch, U. K., Kirchhoff, F., and Kettenmann, H. (2001). GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33, 72-86.
Noren, N. K., and Pasquale, E. B. (2004). Eph receptor-ephrin bidirectional signals that target Ras and Rho proteins. Cell Signal 16, 655-666.
P. H. King, T. D. L., R. T. Fremeau, Jr. and J. D. Keene (1994). Mammalian homologs of Drosophila ELAV localized to a neuronal subset can bind in vitro to the 3′ UTR of mRNA encoding the Id transcriptional repressor. J Neurosci 14, 1943–1952.
Park, H. C., Kim, C. H., Bae, Y. K., Yeo, S. Y., Kim, S. H., Hong, S. K., Shin, J., Yoo, K. W., Hibi, M., Hirano, T., et al. (2000). Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol 227, 279-293.
Pasquale, E. B. (2005). Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol 6, 462-475.
Penzes, P., Beeser, A., Chernoff, J., Schiller, M. R., Eipper, B. A., Mains, R. E., and Huganir, R. L. (2003). Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37, 263-274.
Reyes, R., Haendel, M., Grant, D., Melancon, E., and Eisen, J. S. (2004). Slow degeneration of zebrafish Rohon-Beard neurons during programmed cell death. Dev Dyn 229, 30-41.
Robinson, V., Smith, A., Flenniken, A. M., and Wilkinson, D. G. (1997). Roles of Eph receptors and ephrins in neural crest pathfinding. Cell Tissue Res 290, 265-274.
Roskies, A. L., and O'Leary, D. D. (1994). Control of topographic retinal axon branching by inhibitory membrane-bound molecules. Science 265, 799-803.
Rottner, K., Hall, A., and Small, J. V. (1999). Interplay between Rac and Rho in the control of substrate contact dynamics. Curr Biol 9, 640-648.
Sahin, M., Greer, P. L., Lin, M. Z., Poucher, H., Eberhart, J., Schmidt, S., Wright, T. M., Shamah, S. M., O'Connell, S., Cowan, C. W., et al. (2005). Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron 46, 191-204.
Schmidt, A., and Hall, A. (2002). Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 16, 1587-1609.
Shamah, S. M., Lin, M. Z., Goldberg, J. L., Estrach, S., Sahin, M., Hu, L., Bazalakova, M., Neve, R. L., Corfas, G., Debant, A., and Greenberg, M. E. (2001). EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233-244.
Stein, E., Lane, A. A., Cerretti, D. P., Schoecklmann, H. O., Schroff, A. D., Van Etten, R. L., and Daniel, T. O. (1998). Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev 12, 667-678.
Takeichi, M. (1991). Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251, 1451-1455.
Tanaka, M., Ohashi, R., Nakamura, R., Shinmura, K., Kamo, T., Sakai, R., and Sugimura, H. (2004). Tiam1 mediates neurite outgrowth induced by ephrin-B1 and EphA2. Embo J 23, 1075-1088.
Tessier-Lavigne, M., and Goodman, C. S. (1996). The molecular biology of axon guidance. Science 274, 1123-1133.
Thisse, B., Pflumio, S., F thauer, M., Loppin, B., Heyer, V., Degrave, A., Woehl, R., Lux, A., Steffan, T., Charbonnier, X.Q. and Thisse, C. (2001). Expression of the zebrafish genome during embryogenesis (NIH R01 RR15402). ZFIN Direct Data Submission
Thisse, C., and Thisse, B. (2005). High Throughput Expression Analysis of ZF-Models Consortium Clones. ZFIN Direct Data Submission
Torres, R., Firestein, B. L., Dong, H., Staudinger, J., Olson, E. N., Huganir, R. L., Bredt, D. S., Gale, N. W., and Yancopoulos, G. D. (1998). PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 21, 1453-1463.
Van Etten, R. A. (1999). Cycling, stressed-out and nervous: cellular functions of c-Abl. Trends Cell Biol 9, 179-186.
Vastrik, I., Eickholt, B. J., Walsh, F. S., Ridley, A., and Doherty, P. (1999). Sema3A-induced growth-cone collapse is mediated by Rac1 amino acids 17-32. Curr Biol 9, 991-998.
Vijayan, V. K., Lee, Y. L., and Eng, L. F. (1990). Increase in glial fibrillary acidic protein following neural trauma. Mol Chem Neuropathol 13, 107-118.
Wang, H. U., and Anderson, D. J. (1997). Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 18, 383-396.
Wilkinson, D. G. (2001). Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci 2, 155-164.
Yamaguchi, Y., Katoh, H., Yasui, H., Mori, K., and Negishi, M. (2001). RhoA inhibits the nerve growth factor-induced Rac1 activation through Rho-associated kinase-dependent pathway. J Biol Chem 276, 18977-18983.
Yao, K. M., Samson, M. L., Reeves, R., and White, K. (1993). Gene elav of Drosophila melanogaster: a prototype for neuronal-specific RNA binding protein gene family that is conserved in flies and humans. J Neurobiol 24, 723-739.
Yu, H. H., Zisch, A. H., Dodelet, V. C., and Pasquale, E. B. (2001). Multiple signaling interactions of Abl and Arg kinases with the EphB2 receptor. Oncogene 20, 3995-4006.
Zheng, Y. (2001). Dbl family guanine nucleotide exchange factors. Trends Biochem Sci 26, 724-732.
Zhou, X., Suh, J., Cerretti, D. P., Zhou, R., and DiCicco-Bloom, E. (2001). Ephrins stimulate neurite outgrowth during early cortical neurogenesis. J Neurosci Res 66, 1054-1063.
Zhuo, L., Sun, B., Zhang, C. L., Fine, A., Chiu, S. Y., and Messing, A. (1997). Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev Biol 187, 36-42.
Zisch, A. H., Stallcup, W. B., Chong, L. D., Dahlin-Huppe, K., Voshol, J., Schachner, M., and Pasquale, E. B. (1997). Tyrosine phosphorylation of L1 family adhesion molecules: implication of the Eph kinase Cek5. J Neurosci Res 47, 655-665.
Zou, J. X., Wang, B., Kalo, M. S., Zisch, A. H., Pasquale, E. B., and Ruoslahti, E. (1999). An Eph receptor regulates integrin activity through R-Ras. Proc Natl Acad Sci U S A 96, 13813-13818.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34325-
dc.description.abstractEphrin與其受體Eph皆為細胞膜上之蛋白,為不同細胞之間傳遞訊息的媒介,能夠調控細胞的遷移與神經系統的發育。在許多例子中,ephrin對於神經的發育扮演著負向的調控者,它們能夠刺激神經生長錐的萎縮而抑制神經纖維的生長。在本實驗中,為了釐清ephrinBs對於斑馬魚胚胎發育時期之神經纖維生長的影響,我選殖了斑馬魚的四種ephrinB基因,包括ephrinB1、B2a、B2b以及B3,並且藉由兩種具有神經專一性之啟動子表現於斑馬魚胚胎中。實驗結果發現,GFAP啟動子表現這四種ephrinBs時,皆能促進神經纖維的過度生長;而同樣的現象也可以在HuC啟動子表現ephrinB2a以及ephrinB2b時被觀察到;然而,若為HuC啟動子表現ephrinB1以及ephrinB3時,則並沒有神經纖維過度生長的現象發生。為了進一步釐清ephrinBs是否藉由調控small Rho family GTPases的活性而造成神經纖維的過度生長,我將ephrinBs與下列各small Rho family GTPases之突變型同時表現,包括Rac1 T17N顯性抑制突變、RhoA G14V持續性表現突變、或者Cdc42 T17N顯性抑制突變,結果不論是在GFAP啟動子表現四種ephrinBs或者HuC啟動子表現ephrinB2a以及ephrinB2b之情況下,這些small Rho family GTPases之突變型皆能夠造成神經纖維過度生長的程度有明顯的下降。並且,利用Rac1 inhibitor處理GFAP或HuC啟動子表現ephrinBs之斑馬魚胚胎,其神經纖維過度生長的程度也有下降的趨勢;另外,處理ROCK inhibitor則是能夠恢復因表現RhoA G14V突變而受抑制之神經纖維過度生長。因此,這些實驗的結果說明,在斑馬魚胚胎發育時期,ephrinBs之過度表現能夠透過調控small Rho family GTPases的活性而造成神經纖維過度生長的發生。zh_TW
dc.description.abstractThe ephrins and their Eph receptors are membrane-bound molecules that mediate cell-to-cell signals implicated in the regulation of cell migration and development of nervous system. In many cases, ephrins act as negative regulators that stimulate growth cone collapse and inhibit neurite outgrowth. In this study, to investigate the effects of ephrinBs on neurite outgrowth, I cloned ephrinB genes of zebrafish including ephrinB1, B2a, B2b, B3 and driven them by two neural-specific promoters in zebrafish embryos. I found that overexpression of all the ephrinBs by GFAP promoter stimulated neurite outgrowth. Furthermore, both ephrinB2a and ephrinB2b expressed by HuC promoter also stimulated neurtie outgrowth, while ephrinB1 and ephrinB3 had no effect on neurite outgrowth. To investigate the possibility that ephrinBs stimulated neurite outgrowth via regulating small Rho family GTPases, expressing Rac1 T17N dominant negative mutant, RhoA G14V constitutively active mutant, or Cdc42 T17N dominant negative mutant, respectively, decreased the level of neurite outgrowth which was induced by GFAP and HuC promoter driving ephrinBs. Moreover, treatment with Rac1 inhibitor decreased the level of neurite outgrowth which was induced by ephrinBs, and ROCK inhibitor also abolished the effect of RhoA G14V constitutively active mutant on inhibiting ephrinBs-induced neurite outgrowth. These results indicated that overexpression of ephrinBs induced neurite outgrowth by regulating small Rho family GTPases in zebrafish embryos.en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:03:10Z (GMT). No. of bitstreams: 1
ntu-95-R93b46029-1.pdf: 1009602 bytes, checksum: bf7666c9ebbda03185eafa415b76a918 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents章節目錄.......................................................... Ⅰ
圖表目錄.......................................................... Ⅱ
中文摘要.......................................................... Ⅲ
英文摘要.......................................................... Ⅳ
壹、序言
ㄧ、Eph受體與ephrin配體........................................... 1
二、HuC啟動子之活性分佈與相關特性................................ 10
三、GFAP啟動子之活性分佈與相關特性............................... 13
四、以斑馬魚作為功能性基因體分析之實驗動物的優點................... 15
五、研究目的及策略................................................. 17
貳、材料與方法
ㄧ、斑馬魚基因之選殖............................................... 18
二、Ephrin與相關基因於斑馬魚系統之表現分析......................... 24
参、結果
ㄧ、神經專一性表現質體之建購....................................... 30
二、EphrinBs於神經系統專一性過度表現之結果......................... 30
三、Small Rho family GTPases在ephrinBs促進神經纖維過度生長中之角色.. 35
肆、討論
ㄧ、結果概述....................................................... 44
二、Ephrin對於神經纖維生長之調控結果隨神經細胞種類而改變.......... 45
三、不同時期的神經細胞對於ephrin之反應不同......................... 47
四、Ephrin於神經系統之表現情況且其功能受Eph受體之表現所影響...... 48
五、Small Rho family GTPases彼此間相互影響之關係.................... 49
六、Eph受體透過多種GEFs對於small Rho family GTPases進行調控...... 51
七、結語...........................................................53
伍、參考文獻.......................................................54

表ㄧ、PCR引子序列與基因Accession No............................... 62
表二、帶有限制酵素切位序列之引子序列............................... 63
表三、點突變引子序列............................................... 64
圖一、實驗中所使用之表現質體中啟動子與基因關係圖................... 65
圖二、GFAP啟動子過度表現ephrinBs對於胚胎時期神經纖維發育的影響... 66
圖三、GFAP啟動子表現ephrinBs 促進神經纖維的過度生長.............. 68
圖四、HuC啟動子過度表現ephrinBs對於胚胎時期神經發育的影響........ 69
圖五、HuC啟動子表現ephrinB2a與ephrinB2b 促進神經纖維之過度生長... 71
圖六、Rac1 T17N顯性抑制突變影響ephrinBs所引起之神經纖維過度生長... 72
圖七、RhoA G14V持續性活化突變影響ephrinBs引起神經纖維之生長...... 73
圖八、Cdc42 T17N顯性抑制突變影響ephrinBs引起神經纖維之生長........ 74
圖九、Small Rho family GTPases調控ephrinBs促進神經纖維生長之比較.... 75
圖十、Rac1 inhibitor 抑制ephrinBs所促進之神經纖維生長................ 76
圖十一、ROCK inhibitor 抑制RhoA調控神經纖維生長之功能............. 77
圖十二、EphrinBs透過small Rho family GTPases路徑促進神經纖維生長.... 78
dc.language.isozh-TW
dc.subject斑馬魚zh_TW
dc.subject神經纖維生長zh_TW
dc.subjectephrinBen
dc.subjectneurite outgrowthen
dc.subjectzebrafishen
dc.titleEphrin-B家族過度表現誘導斑馬魚胚胎神經纖維之生長zh_TW
dc.titleInduction of neurite outgrowth in zebrafish embryos by overexpression of ephrin-B familyen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃鵬鵬,黃聲蘋
dc.subject.keyword斑馬魚,神經纖維生長,zh_TW
dc.subject.keywordephrinB,neurite outgrowth,zebrafish,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2006-06-21
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
985.94 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved