Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34321
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馮蟻剛(I-Kong Fong)
dc.contributor.authorChing-Min Leeen
dc.contributor.author李青旻zh_TW
dc.date.accessioned2021-06-13T06:02:59Z-
dc.date.available2006-08-01
dc.date.copyright2006-07-27
dc.date.issued2006
dc.date.submitted2006-06-21
dc.identifier.citation[1] F. Amato, M. Mattei, and A. Pironti, “A note on quadratic stability of uncertain linear discrete-time systems,”IEEE Trans. Automat. Contr., vol. 32, pp. 227-229, 1998.
[2] M. Aoki, Introduction to Optimization Techniques: Fundamentals and Applications of Nonlinear Programming, New York, NY: Macmillan, 1971.
[3] W. Assawinchaichote and S. K. Nguang, “H∞ filtering for fuzzy singularly perturbed systems with pole placement constraints: an LMI approach,” IEEE Trans. Signal Processing, vol. 52, pp. 1659–1667, 2004.
[4] G. I. Bara, J. Daafouz, F. Kratz, and J. Ragot, “Parameter-dependent state observer design for affine LPV systems,” Int. J. Contr., vol. 74, pp. 1601–1611, 2001.
[5] B. R. Barmish, New Tools for Robustness of Linear Systems, New York, NY: Macmillan Publishing Comp., 1994.
[6] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA, 1994.
[7] G. E. Carlson, Signal and Linear System Analysis, New York, NY: John Wiley, 1998.
[8] M. Chilali and P. Gahinet, “H∞ design with pole placement constraints: an LMI approach,” IEEE Trans. Automat. Contr., vol. 41, pp. 358–367, 1996.
[9] M. Chilali, P. Gahinet, and P. Apkarian, “Robust pole placement in LMI regions,” IEEE Trans. Automat. Contr., vol. 44, pp. 2257–2270, 1999.
[10] L. Dai, Singular Control Systems, Berlin, Germany: Springer-Verlag, 1989.
[11] L. Dai, “Observers for discrete singular systems,' IEEE Trans. Automat. Contr., vol. 33, pp. 187–191, 1988.
[12] R. J. Evans, T. E. Fortmann, and A. Cantoni,“Envelope-constrained filters-I: Theory and applications,” IEEE Trans. Inform. Theory, vol. IT-23, pp. 421–434, 1977.
[13] G. Feng, “Robust H∞ filtering of fuzzy dynamic systems,” IEEE Trans. Aeros. and Elect. Syst., vol. 41, pp. 658–670, 2005.
[14] Z. Feng, “A robust H2 filtering approach and its application to equalizer design for communication systems,” IEEE Trans. Signal Processing, vol. 53, pp. 2735–2747, 2005.
[15] M. Fu, C. Souza, and Z.-Q. Luo, “Finite horizon robust Kalman filter design,” IEEE Trans. Signal Processing, vol. 49, pp. 2103–2112, 2001.
[16] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H∞ control,” Int. J. Robust Nonlinear Control, vol. 4, pp. 421–448, 1994.
[17] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox - for Use with MATLAB, Natick, MA: The Math Works Inc., 1995.
[18] J. C. Geromel, J. Bernussos, G. Garcia, and M. C. Oliverira, “H2 and H∞ robust filtering for discrete-time linear systems,” SIAM J. Contr. Optim., vol. 38, pp. 1353–1368, 2000.
[19] L. E. Ghaoui and S. I. Niculescu, Advances in Linear Matrix Inequality Methods in Control, SIAM, Philadelphia, PA, 2000.
[20] K. M. Grigoriadis and J. T. Waston, “Reduced-order H∞ and L2-L∞ filtering via linear matrix inequalities,” IEEE Trans. Aeros. and Electr. Syst., vol. 33, pp. 1326–1338, 1997.
[21] S. Haykin, Communication Systems, New York, NY: Wiley, 2000.
[22] S. C. Hu, I K. Fong, and T. S. Kuo, “Multivariable pi-sharing theory and its application on the Lur’e problem,” IEEE Trans. Automat. Contr., vol. 43, pp. 1501–
1505, 1998.
[23] M. L. Honig, P. Crespo, and K. Steiglitz,“Suppression of near- and far-end crosstalk by linear pre- and post-filtering,” IEEE Trans. Selected Areas Commun.,
vol. 10, pp. 614–629, 1992.
[24] R. A. Horn and C. R. Johnson, Matrix Analysis, New York, NY: Cambridge University Press, 1985.
[25] J. C. Huang, H. S. Wang, and F. R. Chang, “Robust H∞control for uncertain linear time-invariant descriptor systems,” IEE. Proc. Contr. Theory Appl., vol. 147, pp. 648–654, 2000.
[26] J. Jugo and M. de la Sen, “Input-output based pole-placement controller for a class of time-delay systems,” IEE Proc. Contr. Theory Appl., vol. 149, pp. 323–330, 2002.
[27] D. A. Lawrence and C. R. Johnson, Jr., “Recursive parameter identification algorithm stability analysis via pi-sharing,” IEEE Trans. Automat. Contr., vol. AC-31, pp. 16–24, 1986.
[28] C. M. Lee and I K. Fong, “Robust FIR filter design with envelope constraints and channel uncertainty,” IEEE Trans. Signal Processing, vol. 52, pp. 1797–1801, 2004.
[29] H. Li and M. Fu, “A linear matrix inequality approach to robust H∞ filter,” IEEE Trans. Signal Processing, vol. 45, pp. 2338–2350, 1997.
[30] L. Li, Z.-Q. Luo, T. N. Davidson, K. M. Wong, and E. Boss´e, “Robust filtering via semidefinite programming with applications to target tracking,” SIAM J. Optim., vol. 12, pp. 740–755, 2002.
[31] R. Q. Lu, H. Y. Su, and J. Chu, “Robust H∞ filtering for a class of uncertain Lurie time-delay singular systems,” Proc. IEEE Conf. on Systems, Man and
Cybernetics, Washington, D.C., 2003, pp. 3176–3181.
[32] C. Lin, J. Wang, G. H. Yang, and J. Lam, “Robust stabilization via state feedback for descriptor systems with uncertainties in the derivative matrix,” Int. J.
Contr. vol. 73, pp. 407–415, 2000.
[33] Z. Q. Luo, J. F. Sturm, and S. Zhang, “Multivariate nonnegative quadratic mappings,” SIAM J. Optim., vol. 14, pp. 1140–1162, 2004.
[34] M. D. Lutovac, D. V. To˘si´c, and B. L. Evans, Filter Design for Signal Processing –Using Matlab and Mathematica, Upper Saddle River, NJ: Prentice Hall, 2001.
[35] I. Masubuchi, Y. Kamitane, A. Ohara, and N. Suda, “H∞ control for descriptor system: a matrix inequalities approach,” Automatica, vol. 33, pp. 669–673, 1997.
[36] R. M. Palhares and P. L. D. Peres, “Robust H∞ filtering design with pole constraints for discrete-time systems: an LMI approach,” Proc. American Control
Conference, San Diego, CA, pp. 4418–4422,1999.
[37] R. M. Palhares and P. L. D. Peres, “Robust H∞ filtering design with pole placement constraint via linear matrix inequalities,” J. Optim. Theory Appl., vol. 102,
pp. 239–261, 1999.
[38] R. M. Palhares and P. L. D. Peres, “LMI approach to the mixed H2/H∞ filtering design for discrete-time uncertain systems,” IEEE Trans. Aeros. and Electr. Syst., vol. 37, pp. 292–296, 2001.
[39] D. Peaucelle, D. Arzelier, O. Bachelier, and J. Bernussou, “A new robust D-stability condition for real convex polytopic uncertainty,” Syst. Contr. Lett., vol. 40, pp. 21–30, 2000.
[40] A. P. Petrovic, A. J. Zejok, and B. Zrnic, “ECF filter design for radar applications,” in Proc. ICECS ’99, vol. 2, pp. 663–666, 1999.
[41] H. Proch´azka and I. D. Landau, “Pole placement with sensitivity function shaping using 2nd order digital notch filters,” Automatica, vol. 39, pp. 1103–1107, 2003.
[42] M. A. Rotea, M. Corless, D. Da, and I. R. Petersen, “Systems with structured uncertainty: relations between quadratic and robust stability,” IEEE Trans. Automa. Contr., vol. 38, pp. 799–803, 1993.
[43] H. Rotstein and A. Sideris, “H∞ optimization with time domain constraints,” IEEE Trans. Automat. Contr., vol. 39, pp. 762–779, 1994.
[44] M. G. Safonov, R. Y. Chiang, and D. J. N. Limebeer, “Hankel model reduction without balancing – a descriptor approach,” Proc. IEEE Conf. on Decision and Control, Los Angeles, CA, 1987, pp. 112–117.
[45] C. Scherer, P. Gahinet, and M. Chilali,“Multiobjective output-feedback control via LMI optimization,” IEEE Trans. Automa. Contr., vol. 42, pp. 896–911, 1997.
[46] K. Sun and A. Packard, “Robust H2 and H∞ filters for uncertain LFT systems,” IEEE Trans. Automat. Contr., vol. 50, pp. 715–720, 2005.
[47] K. Takaba, N. Morihira, and T. Katayama, “A generalized Lyapunov theorem for descriptor system,” Systems & Control Letters, vol. 24, pp. 49–51, 1995.
[48] Z. Tan, Y. C. Soh, and L. Xie, “Envelope-constrained H∞ FIR filter design,” IEEE Trans. Circuits Syst. II, vol. 47, pp. 79–82, 2000.
[49] Z. Tan, Y. C. Soh, and L. Xie, “Envelope-constrained H∞ filter design: An LMI optimization approach,” IEEE Trans. Signal Processing, vol. 48, pp. 2960–2963, 2000.
[50] Z. Tan, Y. C. Soh, and L. Xie, “H∞ optimal envelope constrained FIR filter design with uncertain input,” Signal Processing, vol. 81, pp. 1407–1415, 2001.
[51] J. Teng, J. K. Fidler, and L. Zheng, “Pole placement algorithm for equiripple bandstop filter design,” IEE Proc. Circuits, Devices and Systems, vol. 149, pp. 325–327, 1994.
[52] C. C. Tseng and S. C. Pei, “Stable IIR notch filter design with optimal pole placement,” IEEE Trans. Signal Processing, vol. 49, pp. 2673–2681, 2001.
[53] R. Venkataramani and Y. Bresler, “Filter design for MIMO sampling and reconstruction,” IEEE Trans. Signal Processing, vol. 51, pp. 3164–3176, 2003.
[54] B. Vo and A. Cantoni, “Robust transmit pulse design,” IEE Proc. Vis. Image Signal Process., vol. 151, pp. 170–174, 2004.
[55] B. Vo, A. Cantoni, and K. L. Teo, Filter Design with Time Domain Mask Constraints: Theory and Applications, Dordrecht Hardbound: Kluwer Academic Publishers, 2001.
[56] L. Xie, “Output feedback H∞ control of systems with parameter uncertainty,” Int. J. Contr., vol. 63, pp. 741–750, 1996.
[57] S. Xu, P. V. Dooren, R. Tefan, and J. Lam, “Robust stability and stabilization for singular systems with state delay and parameter uncertainty,” IEEE Trans.
Automat. Contr. vol. 47, pp. 1122–1128, 2002.
[58] S. Xu and J. Lam, “Robust stability and stabilization of discrete singular systems:
an equivalent characterization,” IEEE Trans. Automat. Contr., vol. 49, pp. 568–574, 2004.
[59] S. Xu, J. Lam, and Y. Zou, “H∞ filtering for singular systems,” IEEE Trans. Automat. Contr., vol. 48, pp. 2217–2222, 2003.
[60] S. Xu, J. Lam, and C. Yang, “Robust H∞ control for uncertain discrete systems with pole placement in a disk,” Syst. Contr. Lett., vol. 43, pp. 85–93, 2001.
[61] S. Xu and C. Yang, “Robust stabilization for generalized state-space systems with uncertainty,” Int. J. Contr., vol. 72, pp. 1659–1664, 1999.
[62] S. Xu and C. Yang, “H∞ state feedback control for discrete singular systems,” IEEE Trans. Automat. Contr., vol. 45, pp. 1405–1409, 2000.
[63] S. Xu and C. Yang, “An algebraic approach to the robust stability analysis and robust stabilization of uncertain singular systems,” Int. J. Systems Science,
vol. 31, pp. 55–61, 2000.
[64] L. Xie, M. Fu, and C. E. de Souza, “H∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback,” IEEE Trans. Automa.
Contr., vol. 37, pp. 1253–1256, 1992.
[65] L. Xie, W. Y. Yan, and Y. C. Soh, “Parameterization and optimization of reduced order filters,” IEEE Automa. Contr., vol. 40, pp. 418–422, 1999.
[66] L. Xie, W. Y. Yan, Y. C. Soh, and L. Li, “Design of optimal reduced order filter for unstable discrete time systems,” IEE Proc. Contr. Theory Appl., vol. 145, pp. 397–404, 1998.
[67] F. Yang and Y. S. Hung, “Robust mixed H2/H∞ filtering with regional pole assignment for uncertain discrete-time systems,” IEEE Trans. Circuits Syst. I, vol. 49, pp. 1236–1241, 2002.
[68] D. Yue and Q. L. Han, “Robust H∞ filter design of uncertain descriptor systems with discrete and distributed delays,” IEEE Trans. Signal Processing, vol. 52, pp. 3200–3212, 2004.
[69] Z. Zang, A. Cantoni, and K. L. Teo, “Envelope-constrained IIR filter design via H∞ optimization methods,” IEEE Trans. Circuits Syst. I, vol. 46, pp. 648–653, 1999.
[70] G. Zhang and Y. Jia, “New results on discrete-time bounded real lemma for singular systems: strict matrix inequality constraints,” Proc. American Contr. Conf., Anchorage, AK, 2002, pp. 634–638.
[71] W. X. Zheng, A. Cantoni, and K. L. Teo, “The sensitivity of envelope-constrained filters with uncertain input,” IEEE Trans. Circuits and Syst. I, vol. 42, pp. 509–516, 1995.
[72] S. Zhou, J. Lam, and G. Feng, “New characterization of positive realness and control of a class of uncertain polytopic discrete-time systems,” Syst. Contr. Lett., vol. 54, pp. 417–427, 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34321-
dc.description.abstract本論文主要討論受性能條件限制之強健H∞ 濾波器問題。針對濾波器設計,不僅考慮H∞ 性能指標,也針對不同類型系統討論不同的濾波器性能限制條件。在訊號處理及通訊系統中,濾波器問題中一種常見的性能規格,是濾波器輸出端在時域上的響應封套限制,尤其對於具有不確定因素之多輸入多輸出系統更具有理論與實際應用上的重要性,因為它可以處理耦合效應的影響。另一個常見而受矚目的性能規格是濾波系統的極點位置。不像時域封套限制條件,設定濾波器極點位置的條件是一種間接的性能規格設定方式,因其必須依賴對系統響應與極點位置關係的知識,但廣受有經驗之系統設計者採用。和控制系統設計問題相比,在濾波問題上,可以只考慮濾波器極點位置的選擇,而非整個系統之極點位置。另外當系統本身具有不穩定極點的情況時,則需要分開討論。在本論文中所考慮的系統包含正規狀態空間模式與奇異狀態空間模式兩類。這是需要的,因為在一些情況下正規狀態空間模式無法如奇異狀態空間模式般可以表現脈衝式的特性,尤其是當系統受到擾動時。
本論文首先考慮具有時域封套條件之濾波問題,並提出直接的方法以允許設計者能針對多輸入多輸出系統,設計具有消除通道耦合效應能力之濾波器。然後,考慮濾波器的D-穩定度條件,這將使濾波器設計者能彈性地調整濾波器的特性。接著針對具有不確定性之奇異系統,比較所設計之正規濾波器與奇異濾波器的性能表現。在討論的過程中將提出一個正規的轉換方式,以轉換具有不確定性之奇異系統成為正規系統。最後,針對奇異系統模式所有系統矩陣皆包含不確定性的情況,與系統具有不穩定極點的情況,進行更深入的研究。本論文的研究特色之一,是在分析與合成的問題上,皆利用線性矩陣不等式的技巧,所以發展出來的方法很容易便能加以實現,而且具計算上的效率優勢。
zh_TW
dc.description.abstractThis dissertation studies the robust H∞ filtering problems with performance constraints. Not only the H∞ performance index is considered for filter design, but also various constraints with respect to other filtering performance requirements are posed for different systems. A general performance specification of filtering problems in signal processing and communication systems is the filter output time-domain response envelope constraints. It is especially of theoretical interest and practical importance for MIMO systems with uncertainties, since coupling effects can be accommodated. Another general performance specification often concerned is about the pole locations of filter systems. Unlike the time-domain envelope constraints, setting pole location constraints is an indirect approach based on the knowledge of system responses and pole locations, but it is widely adopted by
experienced system designers. In contrast to control system
design problems, in filtering problems only the filter, not the overall system, pole locations may be selected, and systems with unstable poles need to be treated separately. Here both systems described by normal state-space models as well as singular state-space models are considered. This is mandatory because in some cases normal state-space models can not express the impulsive characteristic as the singular systems, especially when systems are perturbed.
This dissertation begins by considering filtering problems with the time-domain envelope constraints, and proposes direct methods allowing one to design filters with the channel coupling cancellation capability for the MIMO systems. Then, the D-stability constraint for the filter is considered, enabling filter designers to shape the filter characteristics in a flexible fashion. Subsequently, filtering problems for singular systems with uncertainties are studied to compare the performance with normal and singular filters. In the development process a normal transformation that transfers singular system models with uncertainty to normal system models is proposed. Finally, a deeper exploration is made by letting all system matrices to contain uncertainties in the singular system models, as well as letting systems to have unstable poles. A feature of this research is the use of LMI techniques in both analysis and synthesis problems, so all derived method are easy to implement and computationally efficient.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:02:59Z (GMT). No. of bitstreams: 1
ntu-95-D88921011-1.pdf: 4851229 bytes, checksum: f41cc7892f3c46bb24fa38096a428309 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsTable of Contents ii
List of Tables iv
List of Figures v
Abbreviation & Notations vi
1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . 1
1.2 Main Contributions . . . . . . . . . . . . . . . 4
1.3 Organization of the Dissertation . .. . . . . . . . 5
2 Filter Design with Time-Domain Envelope Constraints 7
2.1 Multivariable π-Sharing Theory . . . . . . . . . 8
2.1.1 Nominal LTI systems . . . . . . . . . . . . . 8
2.1.2 LTI systems with uncertainties . . . . . . . 9
2.2 Problem Formulation . . . . . . . . . . . . . . . 12
2.3 An FIR Filter Design . . . . . . . . . . . . . . . 14
2.3.1 H∞ optimal FIR filter design . . . .. . . . 15
2.3.2 Sub-optimal H1 FIR filter design . . . . . . 16
2.3.3 A numerical example . . . . . . . . . . . . 17
2.4 Summary . . . . . . . . . . . . . . . . . . . . . 20
3 Filter Design with Regional Pole-Placement Constraints 23
3.1 π-sharing Theory Extension and Problem Formulation 24
3.1.1 An extended π-sharing theory . . . . . . . 24
3.1.2 A robust filtering problem formulation . . . 25
3.2 Robust H∞ filter design . . . . . . . . . . . . . 29
3.2.1 Stability conditions and filter design . . . 29
3.2.2 Regional pole-placement constraints in LMIs 32
3.2.3 A numerical example . . . . . . . . . . . . 34
3.3 Summary . . . . . . . . . . . . . . . . . . . . . 36
4 Normal and Singular Filter Design for Singular Systems 37
4.1 Preliminaries for Singular Systems . . . . . . . . 38
4.2 Filter Design for Uncertain Discrete-time Singular Systems . . . . . . . . . 40
4.2.1 System transformation . . . . .. . . . . . . 40
4.2.2 Problem statement . . . . . . . . . . . . . . 43
4.2.3 H∞ filter design . . . . . . . . . . . . . . 45
4.2.4 A numerical example . . . . . . . . . . . . . 50
4.3 Filter Design for Uncertain Continuous-time Singular Systems . . . . . . . 51
4.3.1 Problem statement . . . . . . . . . . . . . . 52
4.3.2 Restricted system equivalence . . . . . . . . 54
4.3.3 Singular filter design . . . . . . . . . . . 56
4.3.4 Normal filter design . . . . . . . . . . . . 62
4.3.5 A numerical example . . . . . .. . . . . . . 67
4.4 Summary . .. . . . . . . . . . . . . . . . . . . . 68
5 H∞ Filter Design for Unstable Systems 69
5.1 Problem Formulation . . . . . . . . . . . . . . . 70
5.1.1 Systems with unstable modes . . . . . . . . . 70
5.1.2 Filtering problem goal . . . . . . . . . . . 71
5.1.3 Preliminary of stability . .. . . . . . . . . 72
5.2 The Robust Filter Design . . . . . . . . . . . . . 73
5.2.1 Conditions and design of robust filters . . . 73
5.2.2 Conditions in terms of LMIs . . . . . . . . 75
5.2.3 A numerical example . . . .. . . . . . . . . 77
5.3 Summary . . . . . . . . . . . . . . . . . . . . . 78
6 Conclusions and Suggestions for Future Study 79
6.1 Conclusions . . . . . . . . . . . . . . . . . . . 79
6.2 Suggestions for Future Study . . . . . . . . . . . 80
Bibliography 82
dc.language.isoen
dc.subject區域極點配置zh_TW
dc.subject封套條件zh_TW
dc.subject受限系統等效性zh_TW
dc.subject強健性zh_TW
dc.subject奇異系統zh_TW
dc.subject濾波器設計zh_TW
dc.subjectπ分配理論zh_TW
dc.subject線性矩陣不等式zh_TW
dc.subjectπ-sharing theoryen
dc.subjectsingular systemsen
dc.subjectrobustnessen
dc.subjectrestricted system equivalenceen
dc.subjectlinear matrix inequalityen
dc.subjectregional pole placementen
dc.subjectenvelope constraintsen
dc.subjectfilter designen
dc.title受性能條件限制之正規強健濾波器設計zh_TW
dc.titleNormal Robust Filter Design with Performance Constraintsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee郭德盛(Te-Son Kuo),方俊雄(Chun-Hsiung Fang),李祖聖(Tzuu-Hseng S. Li),林志民(Chih-Min Lin),容志輝(Chee-Fai Yung)
dc.subject.keyword封套條件,濾波器設計,線性矩陣不等式,π分配理論,區域極點配置,受限系統等效性,強健性,奇異系統,zh_TW
dc.subject.keywordenvelope constraints,filter design,linear matrix inequality,π-sharing theory,regional pole placement,restricted system equivalence,robustness,singular systems,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2006-06-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved