Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34273
標題: 以ML檢定統計量評估結構方程模型足夠樣本人數之決定
Determination of Sufficient Sample Sizes in SEM
via ML-based Test Statistics
作者: Hsin-Yun Liu
劉心筠
指導教授: 翁儷禎
關鍵字: 結構方程模式,樣本人數,參數數目,卡方統計量,適合度指標,
structural equation modeling,sample size,number of estimated parameters,test statistics,fit indices,
出版年 : 2011
學位: 博士
摘要: 結構方程模型奠基於大樣本理論,需要具有足夠的樣本人數,方能避免影響檢定統計量與參數估計值之統計特性而誤導研究推論,故足夠樣本人數為實徵研究者關切的議題。樣本人數取決方法主要有三種取向,絕對樣本人數、樣本人數與參數數目的比值(N:q)、與檢定力分析法,直至目前尚未有三種取向的比較研究,對於樣本人數議題也尚未有定論。本模擬研究在假設模式為真與假設模式錯誤情境下,操弄模式規模、樣本人數、因素負荷量與變項分配,以檢定統計量與適合度指標的表現,比較絕對樣本人數200人、N:q比、與RMSEA檢定力法,並提出樣本人數取決之適宜準則,做為研究者決定樣本人數之參考。結果顯示,當變項為常態分配,絕對樣本人數200人與RMSEA檢定力法建議的樣本人數,因未能適當地反映模式規模,對於規模較大的模式(以參數數目為定義),建議的樣本人數可能會有不適宜的情形。相較之下,可以反映模式規模的N:q比值為較適當之樣本人數取決方法,N:q≧10為可行的樣本人數取決原則。當變項為輕微偏離常態分配,以SBS統計量分析,N:q≧10為可行的樣本人數取決原則,但隨著變項越偏離常態分配,需要更多的樣本人數方能有穩定的分析結果。在適合度指標方面,當N:q≧5,即使變項為非常態分配,仍有可接受的表現。
The statistical theory of structural equation modeling (SEM) is based on large sample theory. Thus, determining a sufficient sample size is an important issue for application of the method. The commonly adopted approaches to the issue include absolute sample size, ratio of sample size to number of parameters, and power analysis via RMSEA (root mean squared error of approximation). Yet, there have been no comparative studies of these three approaches and no consensus concerning the optimal sample size determination with SEM has been reached. The present Monte Carlo study is designed to explore the appropriateness of the sample sizes suggested by these three approaches by examining the performance of maximum likelihood-based test statistics and fit indices. Distributions of variables, sample sizes, models of various sizes, and factor loadings were systematically manipulated. For variables of normal distribution, results showed that absolute minimum sample size and sample size suggested by power analysis via RMSEA were insufficient against large models (operationally defined by the number of estimated parameters). This, therefore, implicitly highlights the importance of considering sample size in relation to the number of parameters estimated (q). The findings suggested that N:q ≧ 10 seemed a plausible rule of thumb for sample size determination in SEM. For slightly nonnormally-distributed data, the results suggested that N:q ≧ 10 might also be a plausible rule of thumb. Moreover, the optimal N:q ratios needed to be larger in order to yield trustworthy test statistics as the degree of non-normality in the data increased. In addition, the behavior of fit indices could be considered acceptable with N:q ≧ 5, even for non-normally distributed variables.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34273
全文授權: 有償授權
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
687.67 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved