Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34255
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳義雄(Yee-Hsiung Chen)
dc.contributor.authorHsiang-Yu Yenen
dc.contributor.author顏香玉zh_TW
dc.date.accessioned2021-06-13T06:00:06Z-
dc.date.available2006-07-24
dc.date.copyright2006-07-24
dc.date.issued2006
dc.date.submitted2006-06-25
dc.identifier.citation曾煥清(2003)國立台灣大學生化科學研究所碩士論文
林翰佳(2004)國立台灣大學生化科學研究所博士論文
陳儷元(1998)國立台灣大學生化科學研究所博士論文
1. Esposito, C. and I. Caputo, Mammalian transglutaminases. Identification of substrates as a key to physiological function and physiopathological relevance. Febs J, 2005. 272(3): p. 615-31.
2. Lorand, L. and R.M. Graham, Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol, 2003. 4(2): p. 140-56.
3. Peitz, B. and P. Olds-Clarke, Effects of seminal vesicle removal on fertility and uterine sperm motility in the house mouse. Biol Reprod, 1986. 35(3): p. 608-17.
4. Pang, S.F., P.H. Chow, and T.M. Wong, The role of the seminal vesicles, coagulating glands and prostate glands on the fertility and fecundity of mice. J Reprod Fertil, 1979. 56(1): p. 129-32.
5. Chen, Y.H., et al., The androgen-dependent mouse seminal vesicle secretory protein IV: characterization and complementary deoxyribonucleic acid cloning. Mol Endocrinol, 1987. 1(10): p. 707-16.
6. Huang, Y.H., S.T. Chu, and Y.H. Chen, Seminal vesicle autoantigen, a novel phospholipid-binding protein secreted from luminal epithelium of mouse seminal vesicle, exhibits the ability to suppress mouse sperm motility. Biochem J, 1999. 343 Pt 1: p. 241-8.
7. Chen, L.Y., et al., Developmental profile of a caltrin-like protease inhibitor, P12, in mouse seminal vesicle and characterization of its binding sites on sperm surface. Biol Reprod, 1998. 59(6): p. 1498-505.
8. Luo, C.W., et al., Distinction of sperm-binding site and reactive site for trypsin inhibition on p12 secreted from the accessory sex glands of male mice. Biol Reprod, 2004. 70(4): p. 965-71.
9. Li, S.H., et al., Demonstration of a glycoprotein derived from the Ceacam10 gene in mouse seminal vesicle secretions. Biol Reprod, 2005. 73(3): p. 546-53.
10. Benayoun, B., et al., Rat seminal vesicle FAD-dependent sulfhydryl oxidase. Biochemical characterization and molecular cloning of a member of the new sulfhydryl oxidase/quiescin Q6 gene family. J Biol Chem, 2001. 276(17): p. 13830-7.
11. Williams-Ashman, H.G., Transglutaminases and the clotting of mammalian seminal fluids. Mol Cell Biochem, 1984. 58(1-2): p. 51-61.
12. Fawell, S.E. and S.J. Higgins, Formation of rat copulatory plug: purified seminal vesicle secretory proteins serve as transglutaminase substrates. Mol Cell Endocrinol, 1987. 53(1-2): p. 149-52.
13. Williams-Ashman, H.G., Regulatory features of seminal vesicle development and function. Curr Top Cell Regul, 1983. 22: p. 201-75.
14. Martan, J. and B.A. Shepherd, The role of the copulatory plug in reproduction of the guinea pig. J Exp Zool, 1976. 196(1): p. 79-84.
15. Lin, H.J., C.W. Luo, and Y.H. Chen, Localization of the transglutaminase cross-linking site in SVS III, a novel glycoprotein secreted from mouse seminal vesicle. J Biol Chem, 2002. 277(5): p. 3632-9.
16. Lin, H.J., et al., Detecting disulfide crosslinks of high-molecular weight complexes in mouse SVS proteins by diagonal electrophoresis. Anal Biochem, 2006. 352(2): p. 296-8.
17. Sarkar, N.K., D.D. Clarke, and H. Waelsch, An enzymically catalyzed incorporation of amines into proteins. Biochim Biophys Acta, 1957. 25(2): p. 451-2.
18. Nemes, Z., et al., A novel function for transglutaminase 1: attachment of long-chain omega-hydroxyceramides to involucrin by ester bond formation. Proc Natl Acad Sci U S A, 1999. 96(15): p. 8402-7.
19. Aeschlimann, D. and M. Paulsson, Transglutaminases: protein cross-linking enzymes in tissues and body fluids. Thromb Haemost, 1994. 71(4): p. 402-15.
20. Grenard, P., M.K. Bates, and D. Aeschlimann, Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem, 2001. 276(35): p. 33066-78.
21. Akimov, S.S. and A.M. Belkin, Cell-surface transglutaminase promotes fibronectin assembly via interaction with the gelatin-binding domain of fibronectin: a role in TGFbeta-dependent matrix deposition. J Cell Sci, 2001. 114(Pt 16): p. 2989-3000.
22. Radek, J.T., et al., Affinity of human erythrocyte transglutaminase for a 42-kDa gelatin-binding fragment of human plasma fibronectin. Proc Natl Acad Sci U S A, 1993. 90(8): p. 3152-6.
23. Isobe, T., et al., Activity-independent cell adhesion to tissue-type transglutaminase is mediated by alpha4beta1 integrin. Eur J Cell Biol, 1999. 78(12): p. 876-83.
24. Porta, R., et al., Mass spectrometric identification of the amino donor and acceptor sites in a transglutaminase protein substrate secreted from rat seminal vesicles. Biochemistry, 1991. 30(12): p. 3114-20.
25. Yee, V.C., et al., Three-dimensional structure of a transglutaminase: human blood coagulation factor XIII. Proc Natl Acad Sci U S A, 1994. 91(15): p. 7296-300.
26. Liu, S., R.A. Cerione, and J. Clardy, Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci U S A, 2002. 99(5): p. 2743-7.
27. Sinclair, J.C., et al., Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat Struct Biol, 2000. 7(7): p. 560-4.
28. Rodrigues-Lima, F., et al., Homology modelling and structural analysis of human arylamine N-acetyltransferase NAT1: evidence for the conservation of a cysteine protease catalytic domain and an active-site loop. Biochem J, 2001. 356(Pt 2): p. 327-34.
29. Fesus, L. and M. Piacentini, Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci, 2002. 27(10): p. 534-9.
30. Gorman, J.J. and J.E. Folk, Structural features of glutamine substrates for human plasma factor XIIIa (activated blood coagulation factor XIII). J Biol Chem, 1980. 255(2): p. 419-27.
31. Gorman, J.J. and J.E. Folk, Structural features of glutamine substrates for transglutaminases. Specificities of human plasma factor XIIIa and the guinea pig liver enzyme toward synthetic peptides. J Biol Chem, 1981. 256(6): p. 2712-5.
32. Gorman, J.J. and J.E. Folk, Structural features of glutamine substrates for transglutaminases. Role of extended interactions in the specificity of human plasma factor XIIIa and of the guinea pig liver enzyme. J Biol Chem, 1984. 259(14): p. 9007-10.
33. Coussons, P.J., et al., Factors that govern the specificity of transglutaminase-catalysed modification of proteins and peptides. Biochem J, 1992. 282 ( Pt 3): p. 929-30.
34. Pastor, M.T., et al., Addressing substrate glutamine requirements for tissue transglutaminase using substance P analogues. FEBS Lett, 1999. 451(3): p. 231-4.
35. Piper, J.L., G.M. Gray, and C. Khosla, High selectivity of human tissue transglutaminase for immunoactive gliadin peptides: implications for celiac sprue. Biochemistry, 2002. 41(1): p. 386-93.
36. Grootjans, J.J., P.J. Groenen, and W.W. de Jong, Substrate requirements for transglutaminases. Influence of the amino acid residue preceding the amine donor lysine in a native protein. J Biol Chem, 1995. 270(39): p. 22855-8.
37. Schrode, J. and J.E. Folk, Stereochemical aspects of amine substrate attachment to acyl intermediates of transglutaminases. Human blood plasma enzyme (activated coagulation factor XIII) and guinea pig liver enzyme. J Biol Chem, 1979. 254(3): p. 653-61.
38. Groenen, P.J., et al., The amine-donor substrate specificity of tissue-type transglutaminase. Influence of amino acid residues flanking the amine-donor lysine residue. Eur J Biochem, 1994. 220(3): p. 795-9.
39. Folk, J.E., Mechanism and basis for specificity of transglutaminase-catalyzed epsilon-(gamma-glutamyl) lysine bond formation. Adv Enzymol Relat Areas Mol Biol, 1983. 54: p. 1-56.
40. Folk, J.E., Mechanism of action of guinea pig liver transglutaminase. VI. Order of substrate addition. J Biol Chem, 1969. 244(13): p. 3707-13.
41. Folk, J.E., The trimethylacetyl-transglutaminase complex. Methods Enzymol, 1982. 87: p. 36-42.
42. Folk, J.E., Structure and catalytic properties of hepatic transglutaminase. Ann N Y Acad Sci, 1972. 202: p. 59-76.
43. Gorman, J.J. and J.E. Folk, Transglutaminase amine substrates for photochemical labeling and cleavable cross-linking of proteins. J Biol Chem, 1980. 255(3): p. 1175-80.
44. Schrode, J. and J.E. Folk, Transglutaminase-catalyzed cross-linking through diamines and polyamines. J Biol Chem, 1978. 253(14): p. 4837-40.
45. Fink, E. and H. Fritz, Proteinase inhibitors from guinea pig seminal vesicles. Methods Enzymol, 1976. 45: p. 825-33.
46. Robidoux, S., et al., Transcription of the mouse secretory protease inhibitor p12 gene is activated by the developmentally regulated positive transcription factor Sp1. Mol Cell Biol, 1992. 12(9): p. 3796-806.
47. Skriver, K., et al., Substrate properties of C1 inhibitor Ma (alanine 434----glutamic acid). Genetic and structural evidence suggesting that the P12-region contains critical determinants of serine protease inhibitor/substrate status. J Biol Chem, 1991. 266(14): p. 9216-21.
48. Aarons, D., et al., Competition between seminal and exogenous proteinase inhibitors for sites on murine epididymal sperm. Contraception, 1985. 31(2): p. 177-84.
49. Aarons, D., J.L. Speake, and G.R. Poirier, Evidence for a proteinase inhibitor binding component associated with murine spermatozoa. Biol Reprod, 1984. 31(4): p. 811-7.
50. Saling, P.M., Involvement of trypsin-like activity in binding of mouse spermatozoa to zonae pellucidae. Proc Natl Acad Sci U S A, 1981. 78(10): p. 6231-5.
51. Robinson, R., et al., Features of a seminal proteinase inhibitor- zona pellucida-binding component on murine spermatozoa. Gamete Res, 1987. 16(3): p. 217-28.
52. Irwin, M., et al., Immunofluorescent localization of a murine seminal vesicle proteinase inhibitor. Biol Reprod, 1983. 28(5): p. 1201-6.
53. Tschesche, H., et al., A new acrosin inhibitor from boar spermatozoa. Eur J Biochem, 1982. 126(1): p. 99-104.
54. Huhtala, M.L., Demonstration of a new acrosin inhibitor in human seminal plasma. Hoppe Seylers Z Physiol Chem, 1984. 365(7): p. 819-25.
55. Benau, D.A. and B.T. Storey, Relationship between two types of mouse sperm surface sites that mediate binding of sperm to the zona pellucida. Biol Reprod, 1988. 39(2): p. 235-44.
56. Sanz, L., et al., Isolation and biochemical characterization of two isoforms of a boar sperm zona pellucida-binding protein. Biochim Biophys Acta, 1992. 1119(2): p. 127-32.
57. Primakoff, P., Sperm proteins being studied for use in a contraceptive vaccine. Am J Reprod Immunol, 1994. 31(4): p. 208-10.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34255-
dc.description.abstract轉麩胺醯胺酶(Transglutaminase, TGase)在鈣離子存在的條件下,可以使蛋白質中的離胺酸(Lys, K)和麩胺酸(Gln, Q)進行交聯,形成Lys和Gln之間的isopeptide bond。小鼠儲精囊內的SVSⅢ蛋白質,由265個胺基酸所組成,其中第108-145胺基酸具有5個QXKS/T的重複片段 (X代表脂肪類胺基酸Val、Leu和Ile),為轉麩胺醯胺酶交聯作用區。已知Lys緊鄰的氮端的胺基酸為脂肪性,而碳端為親水性,符合文獻對TGase基質Lys的歸納。因此這五個QXKS/T序列與TGase的反應能力就決定於另一個基質Gln。因為每個序列的Gln碳端緊鄰的胺基酸都是脂肪性,緊鄰Gln之氮端胺基酸將為影響其作為基質能力的關鍵。
爲了要研究Gln之氮端胺基酸為親水性或疏水性,對於TGase反應能力的影響,依QXKS/T氮端為親水性(Ser和Thr)或疏水性(Ala和Gly)胺基酸,以基因重組技術將SVSⅢ中之QSQIKSQTQVKS和AQLKSQPGQLKT融合於GST,分別命名為F1和F2。比較F1和F2與TGase反應的能力而知,F1較易被TGase催化交聯。利用基因重組的技術,將QSQIKSQTQVKS聯結於表現載體,再利用建構的載體表現exotoxin第27-278 的胺基酸序列和R19L(P12的突變蛋白,將P12蛋白的第19個胺基酸Arg用Leu取代),命名爲LEX-R19L。將LEX-(R19L)經TGase交聯後,可以加強R19L的免疫抗原性。這項研究證實了利用酵素法來製備多倍體交聯蛋白質是可行的。
zh_TW
dc.description.abstractMouse seminal vesicle secretion protein SVSⅢ is a glycoprotein containing 265 amino acid residues, in which residues 108-145 is compound of 5 tandem repeats of an oligopeptide QXK(S/T), where X represents an aliphatic amino acid residue. This region has previously demonstrated as a transglutaminase (TGase)-catalyzed site in the formation of an ε-(γ-glutamyl) lysine bond. This work was conducted to assess the impact of amino acid residue on the NH2 side of Q on the TGase substrate activity of QXK(S/T).
We prepared a recombinant polypeptide of GST fused to either QSQIKSQTQVKS (F1) or AQLKSQPGQLKT (F2), and assayed their TGase substrate activity. We found that both F1 and F2 but not GST alone could be cross-linked by TGase. The enzyme cross-linked rate of F1was much faster than that of F2, stronger manifestation of QSQIKSQTQVKS than AQLKSQPGQLKT as a good TGase substrate. Meanwhile, a truncated protein that contains residues 27-278 in the exotoxin from Pseudomonas aeruginosa in which V48 is mutated to E was fused to R19L, a mutated P12 in which R19 of the parent protein is replaced by L. This recombinant protein was tentatively designated as EX-R19L. Another recombinant protein LEX-R19L, was prepared by ligation of QSQIKSQTQVKS to EX-R19L, and it was cross-linked by TGase. Female mice were immunized with EX-(R19L)2, LEX-R19L or the TGase-crosslinked LEX-R19L. Among the three antigens, the last one generated the antisera which contained the highest titer of antibody against R19L.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T06:00:06Z (GMT). No. of bitstreams: 1
ntu-95-R93b46028-1.pdf: 670804 bytes, checksum: 376bb1d17a12ed13933ce37300dac7f2 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要 iii
英文摘要 iv
縮寫表 v
第一章 緒 論 1
1.1 生殖學概論 1
1.2 哺乳動物雄性生殖系統 1
1.3 雄性附屬性腺的研究 2
1.4 儲精囊分泌蛋白 3
1.5 交配栓的形成和功能 3
1.6 轉麩胺醯胺酶 4
1.6.1 轉麩胺醯胺酶的功能 4
1.6.2 轉麩胺醯胺酶的分類 4
1.6.3 轉麩胺醯胺酶催化的轉化醯基(acyl-transfer)反應 5
1.6.4 轉麩胺醯胺酶的活性反應區和結構 6
1.6.5 轉麩胺醯胺酶的基質選擇性 7
1.7 蛋白酶抑制因子在生殖生理上的研究 8
1.8 利用P12當作免疫避孕抗原的研究 8
1.9 研究背景和動機 9
第二章 實驗方法與材料 10
2.1 重組質體的製備 10
2.1.1 表現載體的圖譜 10
2.1.2 引子的設計 11
2.2 聚合酶連鎖反應 11
2.3 限制酶反應 (Restriction Enzyme digestion) 12
2.4 回收限制酶反應後的DNA片段 14
2.5 DNA 接合反應 15
2.6 質體轉型 (Transformation) 15
2.7 小量質體抽取 17
2.8 核酸定序 18
2.9 重組蛋白的純化 18
2.9.1 純化GST的重組蛋白 18
2.9.2 純化His-tag的重組蛋白 19
2.10 蛋白質定量 20
2.11 TGase基質的交聯反應 21
2.12 SDS-聚丙烯醯胺膠體電泳 21
2.13 Coomassie Blue G-250染色 23
2.14 西方墨點法 23
2.15 動物實驗和測定R19L抗體力價 25
第三章 實驗結果 27
3.1 比較QXKS/T序列緊鄰Q的氮端胺基酸對TGase反應性的影響 27
3.2 比較F1和F2被TGase交聯的速率 28
3.3 Linker使exotoxin與R19L的融合蛋白被TGase交聯成高分子聚合物 28
3.4 LEX-R19L交聯物的抗原性 29
圖3-1 比較QXKS/T序列緊鄰Q的氮端胺基酸對TGase反應性的影響 30
圖3-2 證實高分子的聚合物是由TGase的交聯反應所形成 32
圖3-3 比較F1和F2被TGase交聯的速率 34
圖3-4 Exotoxin與R19L的cDNA和胺基酸序列 36
圖3-5 製備EX-(R19L)2和LEX-R19L 38
圖3-6 LEX-R19L交聯物的抗原性 40
第四章 結論與未來展望 42
4.1緊鄰Q的氮端胺基酸為親水性將會加強QXKS/T片段與TGase的反應性 42
4.2 LEX-R19L交聯物會提高R19L的抗原性 42
4.3未來的研究方向 42
References 44
dc.language.isozh-TW
dc.subject交聯作用區zh_TW
dc.subject轉麩胺醯胺&#37238zh_TW
dc.subjectsubstrate activityen
dc.subjectmouse SVSⅢen
dc.subjecttransglutaminaseen
dc.title小鼠SVSⅢ蛋白的轉麩胺醯胺酶交聯作用區中五個QXK(S/T)重複序列的基質活性zh_TW
dc.titleDissecting the substrate activity of tandem repeats QXK(S/T) in the transglutaminase-catalytic site of mouse SVSⅢen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱善德(Sin-Tak Chu),余榮熾(Lung-Chih Yu)
dc.subject.keyword轉麩胺醯胺&#37238,交聯作用區,zh_TW
dc.subject.keywordsubstrate activity,transglutaminase,mouse SVSⅢ,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2006-06-26
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
655.08 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved