請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34246
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 雷欽隆 | |
dc.contributor.author | Sheng-Wen Chung | en |
dc.contributor.author | 鍾聖文 | zh_TW |
dc.date.accessioned | 2021-06-13T05:59:44Z | - |
dc.date.available | 2007-01-01 | |
dc.date.copyright | 2006-07-05 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-06-26 | |
dc.identifier.citation | [1]S. Weis, S. Sarma, R. Rivest, and D. Engels, “Security and Privacy Aspects of Low-Cost Radio Frequency Identification Systems,” Security in Pervasive Computing 2003, 2003.
[2]M. Ohkubo, K. Suzuki, and S. Kinoshita, “Cryptographic Approach to Privacy-Friendly Tags,” RFID Privacy Workshop, 2003. [3]D. Henrici and P. Muller, “Hash-Based Enhancement of Location Privacy for Radio-Frequency Identification Devices Using Varying Identifiers,” The Second IEEE Annual Conference of Pervasive Computing and Communications Workshops, 2004. [4]K. Rhee, J. Kwak, S. Kim, and D. Won, “Challenge-Response Based RFID Authentication Protocol,” International Conference on Security in Pervasive Computing, 2005. [5]G. Avoine and P. Oechslin, “A Scalable and Provably Secure Hash-Based RFID Protocol,” International Workshop on Pervasive Computing and Communication Security, 2005. [6]S. Sarma, S. Weis, and D. Engels, “Radio-Frequency Identification: Security Risk and Challenges,” RSA Laboratories Cryptobytes, 2003. [7]A. Juels, R. Rivest, and M. Szydlo, “The Blocker Tag: Selective Blocking of RFID Tags for Consumer Privacy,” 8th ACM Conference on Computer and Communications Security, 2003. [8]J. Saito, J. Ryou, and K. Sakurai, “Enhancing Privacy of Universal Re-encryption Scheme for RFID Tags,” Embedded and Ubiquitous Computing, 2004. [9]S. Sarma, “Towards the Five-Cent Tag,” Technical Report MIT-AUTOID-WH-014, MIT, 2002. [10]S. Sarma, S. Weis, and D. Engles, “RFID Systems and Security and Privacy Implications,” Cryptographic Hardware and Embedded Systems, 2002. [11]P. Golle, M. Jakobsson, A. Juels, and P. Syverson, “Universal Re-encryption for Mixnets,” The Cryptographers’ Track at the RSA Conference, 2004. [12] A. Juels and R. Pappu, “Squealing Euros: Privacy Protection in RFID-Enabled Banknotes,” Financial Cryptography 2003, 2003. [13]I. Vajda and L. Buttyan, “Lightweight Authentication Protocols for Low-Cost RFID Tags,” Security in Ubiquitous Computing, 2003. [14] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong Authentication for RFID Systems Using the AES Algorithm,” Cryptographic Hardware and Embedded Systems, 2004. [15]D. Molnar and D. Wagner, “Privacy and Security in Library RFID: Issues, Practies, and Architectures,” Computer and Communications Security, 2004. [16]A. Juels, “Minimalist Cryptography for Low-Cost RFID Tags,” Security in Communication Networks, 2004. [17]D. Shanks, “Five Number-Theoretic Algorithms,” the Second Manitoba Conference on Numerical Mathematics, 1973. [18]S. Lindhurst, “An Analysis of Shanks’s Algorithm for Computing Square Roots in Finite Fields,” Number theory (Ottawa, 1996), 1999. [19]G. Avoine, E. Dysli, and P. Oechslin, “Reducing Time Complexity in RFID Systems,” Selected Areas in Cryptography, 2005. [20]S. Engberg, M. Harning, and C. Damsgaard Jensen, “Zero-Knowledge Device Authentication: Privacy & Security Enhanced RFID Preserving Business Value and Consumer Convenience,” Privacy, Security and Trust, 2004. [21]M. Ohkubo, K. Suzuki and S. Kinoshita, “RFID Privacy Issues and Technical Challenges,” Communications of the ACM, 2005. [22]L. Bolotnyy and G.. Robins, “Randomized Pseudo-Random Function Tree Walking Algorithm for Secure Radio Frequency Identication,” Automatic Identication Advanced Technologies, 2005. [23]J. Yang, K. Ren and K. Kim, “Security and Privacy on Authentication Protocol for Low-Cost RFID,” Symposium on Cryptography and Information Security, 2005. [24]J. Yang, J. Park, H. Lee, K. Ren, and K. Kim, “Mutual Authentication Protocol for Low-Cost RFID,” RFID and Lightweight Crypto, 2005. [25]W. Stallings, “Cryptography and Network Security,” Prentice Hall, 2003. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34246 | - |
dc.description.abstract | 隨著RFID的技術日漸成熟,各式各樣的應用相繼出現,便利了我們的生活,但RFID系統若是設計不當,有可能造成使用者隱私上的問題 (privacy problems),目前雖然已經有許多相關研究提出了各種認證協定 (authentication protocol) 來解決使用者隱私問題,但許多能夠保護使用者隱私且適用於分散式應用環境的認證協定,卻有整體系統效能不佳或擴充性不足的問題。由於二次剩餘加解密演算法的安全性高、計算量少與運算速度快,所以二次剩餘非常適合RFID系統使用。在本篇論文中,我們提出一種利用二次剩餘的新認證協定,不但能保護使用者的隱私,而且使協定具擴充性,使整個系統有效率地運作。
由於RFID的應用廣泛,各種應用的應用環境不同,所以一個協定通常無法同時滿足所有應用在安全性、效能和成本三方面的需求,因此我們將所有應用以安全需求度作區分,分別對一般安全需求的應用和安全需求較高的應用設計兩個認證協定,Protocol 1可避免passive attack的攻擊方式,Protocol 2可避免passive attacks和active attack的攻擊方式,Protocol 1和protocol 2都有很高的效率且所需的成本很低,使我們所提出的協定真正地適合商業的實作環境。 | zh_TW |
dc.description.abstract | A radio frequency identification (RFID) system is an automatic identification technology using radio frequency. RFID applications are very useful in our daily life. A poorly-designed RFID system may cause privacy problems. Although a lot of authentication protocols have been proposed to solve privacy problems, many of them are inefficient or unscalable. Quadratic residue cryptosystems are secure, efficient, and easy to compute, therefore they are very suitable for RFID authentication protocols. In this thesis, we propose new RFID authentication protocols using quadratic residues. They not only solve privacy problems, but also make RFID systems efficient and scalable.
An authentication protocol does not always satisfy security, performance and cost requirement of an application at the same time. We propose two protocols for normal security requirement and high security requirement. Protocol 1 can prevent passive attacks. Protocol 2 can prevent passive and active attacks. Both protocol 1 and protocol 2 have high performance and low cost. Our protocols are suitable for real-world commercial implementations. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T05:59:44Z (GMT). No. of bitstreams: 1 ntu-95-R93944016-1.pdf: 363285 bytes, checksum: 8cc3bdff64db2063fa36dfa00d7f911b (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 第一章 簡介 1
第二章 無線射頻辨識系統 3 第三章 相關研究 5 3.1 Kill Command 6 3.2 Faraday Cage 6 3.3 Active Jamming 6 3.4 Blocker Tags 7 3.5 The Hash-Lock Protocol 7 3.6 The Randomized Hash-Lock Protocol 9 3.7 The Hash-Chain Protocol 11 3.8 The Hash-Based ID Variation Protocol 13 3.9 The Rhee et al.’s Protocol 17 第四章 相關數學 19 4.1 二次剩餘 19 4.2 中國餘式定理 20 4.3 Legendre符號 20 4.4 在模數下開平方根 21 4.4.1 模數為一個質數 21 4.4.1.1 Shank的演算法 21 4.4.1.2 模數 滿足 21 4.4.2 模數由兩個相異的質數相乘 22 第五章 本文提出的認證協定 23 5.1 可抵擋被動攻擊之認證協定 24 5.1.1 認證流程 25 5.1.2 安全分析 26 5.1.3 多種應用共用同一個tag 27 5.2 可抵擋主動攻擊之認證協定 28 5.2.1 認證流程 29 5.2.2 安全分析 30 第六章 比較評估 33 6.1 安全性比較 33 6.2 儲存空間比較 34 6.3 效能比較 35 6.4 綜合分析 37 第七章 結論 38 參考文獻 39 | |
dc.language.iso | zh-TW | |
dc.title | 利用二次剩餘的可擴充無線射頻辨識系統認證協定 | zh_TW |
dc.title | Scalable RFID Authentication Protocols Using Quadratic Residues | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭斯彥,顏嗣鈞,黃秋煌,劉立 | |
dc.subject.keyword | 無線射頻辨識系統,認證協定,二次剩餘, | zh_TW |
dc.subject.keyword | RFID,Authentication Protocol,Quadratic Residue, | en |
dc.relation.page | 42 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-06-27 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 354.77 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。