Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34222
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李德貴(Teh-Quei Lee)
dc.contributor.authorKuo-Feng Chenen
dc.contributor.author陳國峰zh_TW
dc.date.accessioned2021-06-13T05:58:46Z-
dc.date.available2006-06-28
dc.date.copyright2006-06-28
dc.date.issued2006
dc.date.submitted2006-06-27
dc.identifier.citation汪品先等 著(1995)十五萬年來的南海—南海晚第四紀古海洋學研究階段報告。同濟大學出版社,184頁。
周漢強(2000)南海岩心MD972148之古地磁及磁學性質研究。國立台灣大學地質學研究所碩士論文,93頁。
周祐民(2003)鄂霍次克海岩心MD012414之磁學研究-180萬年來東北亞古氣候及古環境變遷。國立台灣師範大學地球科學研究所碩士論文,81頁。
施雅風、于革 (2003) 40 ~ 30 ka B.P.中國暖溼氣候與海侵的特徵與成因探討。第四紀研究,第23卷,第1期,第1-11頁。
陳明德、賴宗德(1995)表現於南中國海之晚第四紀海洋環境及氣候變化。地質,第15卷,第1期,第83-93頁。
陳鎮東 著(2001)南海海洋學。渤海堂文化公司,506頁。
邱子虔(2000)南海東南海域MD972142岩心晚第四紀浮游有孔蟲氧同位素地層及古海洋變遷。國立台灣大學地質學研究所碩士論文,70頁。
郭季真(2001)南海晚新生代沉積物中黏土、石英含量之變化及其對季風變遷之隱示。國立台灣大學海洋研究所碩士論文,120頁。
黃尹聖(2003)班達海岩心MD012380之磁學研究:80萬年來赤道暖池區之古環境變遷,88頁。
楊小強、張貽男、高芳蕾、周文娟、周永章(2006) 近130 ka以來地球磁場相對強度變化:南海南部NS93-5鑽孔記錄,熱帶地理,第26卷,第1期,第1-5頁。
蔡榮浩(2000)南海MD972142岩心火山灰層研究及其意義,國立台灣大學地質學研究所碩士論文,63頁。
蕭良堅(2002)南海東南海域晚第四紀生物源沉積物記錄與古氣候之研究(IMAGES岩心MD972142)。國立台灣海洋大學應用地球物理研究所碩士論文,97頁。
Bard, E. (1988) Correction of accelerator mass spectrometry 14C age measured on planktonic foraminifera: paleoceanographic implications. Paleoceanography, 3-6, 635-645.
Bassinot, F. and A. Baltzer (2001) On Board Report of WEPAMA Cruise MD 233 / IMAGES Ⅶ, p113.
Bassinot, F. C., L. D. Labeyrie, E. Vincent, X. Quidelleur, N. J. Shackleton, and Y. Lancelot (1994) The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth and Planetary Science Letters,126, 91-108.
Bard, E., M. Arnold, B. Hamelin, N.Tisnerat-Laborde, and G.Cabioch (1998) Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon, 40-3, 1085-1092.
Berger, W. H. (1979) Stable Isotopes in Foraminifera. In Foraminferal Ecology and Paleocology, SEPM Short Course, No.6.
Bleil, U., and G. Gard (1989) Chronology and correlation of Quaternary magnetostratigraphy and nannofossil biostratigraphy in Norwegian-Greenland Sea sediments. Geol. Rundsch., 78, 1173-1187.
Brown , L.L., B.S. Singer and M. Gorring (2004) Paleomagnetism and 40Ar/39Ar Chronology of Lavas from Meseta del Lago Buenos Aires, Patagonia. Geochemistry, Geophysics, Geosystems, 5, Q01H04, doi: 10.1029/2003GC000526
Buhring, C., Sarnthein, M., and E. Helmut (2004) Toward a High-Resolution Stable Isotope Stratigraphy of the Last 1.1 m.y.: Site 1144, South China Sea. Proceedings of the Ocean Drilling Program, Scientific Results, 184 (on-line)
Cisowski, S. M., and F. R. Hall (1997) An examination of the paleointensity record and geomagnetic excursions recorded in Leg 155 cores. Proceedings of the Ocean Drilling Program, Scientific Results, 155, 231-243.
Champion, D. E., Lanphere, M. A., and Kuntz, M.A. (1988) Evidence for a new geomagnetic reversal from lava flows in Idaho - Discussion of short polarity reversals in the Brunhes and late Matuyama polarity chrons. Journal of Geophysical Research, 93, 11667-11680.
Channell J.E.T., D.A. Hodell, and B. Lehman (1997) Relative paleointensity and 18O at ODP Site 983 (Gradar Drift, North Atlantic) since 350 ka. Earth and Planetary Science Letters, 136, 103–118.
Channell, J. E. T. (1999) Geomagnetic paleointensity and directional secular variation at Ocean Drilling Program (ODP) Site 984 (Bjorn Drift) since 500 ka: Comparisons with ODP Site 983 (Gardar Drift). Journal of Geophysical Research, 104, B10 , 22937-22951.
Chen, M. -T., L. -J. Shiau, P. -S. Yu, T. -C. Chiu, Y. -G. Chen, and K. -Y. Wei (2003) 500 000-Year records of carbonate, organic carbon, and foraminiferal sea-surface temperature from the southeastern South China Sea (near Palawan Island). Palaeogeography, Palaeoclimatology, Palaeoecology, 197, 113-131.
Clemens, S.C., and W. L. Prell (2003) Data report: oxygen and carbon isotopes from Site 1146, Northern South China Sea. Proceedings of the Ocean Drilling Program, Scientific Results, 184, 1-8 (on-line)
Droxler, A., and J. W. Farrell (2000) Marine isotope stage 11 (MIS 11): New insights for a warm future. Global and Planetary Change, 24, 1–5.
Emiliani, C. (1955) Pleistocene temperatures. The Journal of Geology, 63-6, 538-578.
Guyodo, Y., and J. P. Valet (1996) Relative variations in geomagnetic intensity from sedimentary records: The past 200 thousand years, Earth and Planetary Science Letters, 143, 23–26.
Guyodo, Y., and J. -P. Valet, (1999) Global changes in intensity of the Earth’s magnetic field during the past 800 kyr. Nature, 399, 249-252.
Harrison, C. G. A., and B. L. K. Somayajulu (1966) Behavior of the Earth’s magnetic field during a reversal. Nature, 212, 1193-1195.
Hartl, P., L. Tauxe, and C. Constable (1993) Early Oligocene geomagnetic field behavior from Deep Sea Drilling Project site 522. Journal of Geophysical Research, 98, B11, 19649-19665.
Hearty, P.J., P. Kinder, H. Cheng, and R.L. Edwards (1999) A 120 m middle Pleistocene sea-level highstand (Bermuda and the Bahamas) due to partial collapse of Antarctic ice. Geology, 27, 375–378.
Heslop, D., C.G. Langereis, and M. J. Dekkers (2000) A new astronomical timescale for the loess deposits of Northern China. Earth and Planetary Science Letters, 184, 125-139.
Horng, C. -S., A. P. Roberts, and W. -T. Liang (2003) A 2.14-Myr astronomically tuned record of relative geomagnetic paleointensity from the western Philippine Sea, Journal of Geophysics Research, 108, B1, doi:10.1029/2001JB001698.
Imbrie, J., J.D. Hays, D.G. Martinson, A. McIntyre, A.C. Mix, J.J. Morley, N.G. Pisias, W.L. Prell, and N.J. Shackleton (1984) The orbital theory of Pleistocene Climate: support from a revised chronology of the Marine 18O record. IN (A. Berger, J. Imbrie, J. Hays, G. Kukla, and B. Saltzman, eds.) Milankovitch and Climate, Part 1, Dordrecht: Reidel Publishing Co. 269-305.
Jansen, J. F. H., A. Kuijpers, and S. R. Troelstra (1986) A Mid-Brunhes climatic event: Long-term changes in global atmosphere and ocean circulation. Science, 232, 619-622.
Johnson, E. A., T. Murphy, and O. W. Torreson (1948) Prehistory of the Earth’s magnetic field, Journal of Geophysical Research, 53, 349-372.
Johnson, H. P., H. Kinoshita, and R. T. Merrill (1975) Rock magnetism and paleomagnetism of some north Pacific deep-sea sediment core, Geological Society of American Bulletin, 86, 412–420.
Kent, D. V., S.R. Hemming, and B. D. Turrin (2002) Laschamp Excursion at Mono Lake? Earth and Planetary Science Letters, 197, 151-164.
King, J., S. K. Banerjee, J. Marvin, and O. Ozdemir (1982) A comparison of different magnetic methods for determining the relative grain size of magnetite in nature materials : some results from lake sediments. Earth and Planetary Science Letters, 59, 404-419.
King, J. W., S. K. Banerjee, and J. Marvin (1983) A new rockmagnetic approach to selecting sediments for geomagnetic paleointensity studies: Application to paleointensity for the last 4000 years. Journal of Geophysical Research, 88, 5911–5921.
Kissel, C., C. Laj , S. Clemens, and P. Solheid (2003) Magnetic signature of environmental changes in the last 1.2 Myr at ODP Site 1146, South China Sea. Marine Geology, 201, 119-132.
Laj, C., and C. Kissel (1999) Geomagnetic field intensity at Hawaii for the Last 420 kyr from the Hawaii Scientific Drilling Project Core, Big Island, Hawaii. Journal of Geophysical Research, 104, B7, 15317–15338.
Langereis, C. G., M. J. Dekkers, G. J. Lange, M. Paterne, and P. J. M. Santvoort (1997) Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes, Geophysical Journal International, 129, 75– 94.
Lanphere, M. A. (2000) Comparison of conventional K-Ar and 40Ar/39Ar dating of young mafic volcanic rocks. Quaternary Research, 53, 294-301.
Lee, M.-Y., K. -Y. Wei, and Y. -G.. Chen (1999) High resolution oxygen isotope stratigraphy for the last 150,000 years in the southern South China Sea: core MD972151. Terrestrial, Atmospheric and Oceanic Sciences, 10, 239-254.
Levi, S., and S. K. Banerjee (1976) On the possibility of obtaining relative paleointensities from lake sediments. Earth and Planetary Science Letters, 29, 219–226.
Liu, Z., A. Trentesaux, S. C. Clemens, C. Colin, P. Wang, B. Huang, and S. Boulay (2003) Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years. Marine Geology, 201, 133-146.
Lourens, L. (2004) Revised tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and implications for the 18O, tephra, calcareous nannofossil, and geomagnetic reversal chronologies of the past 1.1 Myr, Paleoceanography, 19-3, PA3010 10.1029/2003PA000997
Lowrie, W. (1997) Fundamentals of Geophysics, Cambridge University.
Lu, H., X. Liu, F. Zhang, Z. An, and J. Dodson (1999) Astronomical calibration of loess-paleosol deposits at Louchuan, central Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 154, 237-246.
Lund, S. P., T. Williams, G. D. Acton, B. Clement, and M. Okada (2001) Brunhes chron magnetic field excursions recovered from Leg 172 sediments. In Keigwin, L. D., D. Rio, G. D. Acton, and E. Arnold eds.: Proceedings of the Ocean Drilling Program, Scientific Results,172, Chapter 10.
Maher, B. A. (1988) Magnetic properties of some synthetic sub-micron magnetites, Geophysical Journal, 94, 83–96.
Martinson , D. G., N. G. Pisias , J. D. Hays , J. Imbrie , T. C. M. Jr., and N.J. Shackleton (1987) Age Dating and orbital theory of the ice ages : Development of a high-resolution 0 to 300,000 - year chronostratigraphy., Quaternary Research, 27, 1-29.
Nagy, E. A. and J. -P. Valet (1993) New advances for paleomagnetic studies of sediment cores using U-channels, Geophysical Research Letters, 20, 671–674.
Nowaczyk, N.R., and M. Baumann (1992) Combined high-resolution magnetostratigraphy and nannofossil biostratigraphy for late Quaternary Arctic Ocean sediments. Deep-Sea Research, 39, 567-601.
Nowaczyk, N. R., T. W. Frederichs, A. Eisenhauer, and G. Gard (1994) Magnetostratigraphy data from late Quaternary sediments from the Yermak Plateau, Arctic Ocean: Evidence for four geomagnetic polarity events within the last 170 ka of the Brunhes Chron. Geophysical Journal International, 117, 453-471.
Nowaczyk, N. R., and T. W. Frederichs (1999) Geomagnetic events and relative palaeointensity variations during the past 300 ka as recorded in Kolbeinsey Ridge sediments, Iceland Sea: indication for a strongly variable geomagnetic field. International Journal of Earth Sciences, 88, 116-131.
Oda, H., M. J. Dekkers, C. G. Langereis, L. Lourens, D. Heslop (2004) A paleomagnetic record of the last 640 kyr from an eastern Mediterranean piston core and a review of geomagnetic excursions in the Brunhes. American Geophysical Union, Fall Meeting 2004, abstract #GP41B-08
Oda, H. (2005) Recurrnet Geomagnetic Excursions: A Review for the Brunhes Normal Polarity Chron, Journal of Geography, 114-2, 174-193 ( in Japanese, with English abstract ).
Pan, Y. X., R. X. Zhu, Q. S. Liu, B. Guo, L. P. Yue, and H. N. Wu (1997) Geomagnetic episodes of the last 1.2 Myr recorded in Chinese loess. Geophysical Research letters, 29, 1282, doi:10.1029/2001GL014024
Rio, D., I. Raffi, and G. Villa (1990) Pliocene-Pleistocene calcareous nannofossil distribution patterns in the Western Mediterranean. In Kastens, K.A., J. Mascle, et al., Proceedings of the Ocean Drilling Program, Scientific Results, 107: College Station, TX (Ocean Drilling Program), 513-533.
Rohling, E.J., M. Fenton, F.J. Jorissen, P. Bertrand, G. Ganssen, and J.P. Caulet (1998) Magnitudes of sealevel lowstands of the past 500,000 yr. Nature, 394, 162–165.
Ryan, W. B. F. (1972) Stratigraphy of late Quaternary sediments in the Eastern Mediterranean. In Stanley, D. J. ed.: The Mediterranean Sea: A Natural Sedimentation Laboratory. 1, Dowden, Hutchinson and Ross, Stroudberg, 149-169.
Schneider, D. A., and G. A. Mello (1996) A high-resolution marine sedimentary record of geomagnetic intensity during the Brunhes chron. Earth and Planetary Science Letters, 144, 297–314.
Smith, J. D., and J. H. Foster (1969) Geomagnetic reversal in Brunhes normal polarity epoch. Science, 163, 565-567.
Stoner, J. S., J. E. T. Channell, D. A. Hodell, and C. D. Charles (2003) A ~580 kyr paleomagnetic record from the sub-Antarctic South Atlantic (Ocean Drilling Program Site 1089). Journal of Geophysical Research, 108, B5, 2244, doi:10.1029/2001JB001390.
Szeremeta, N., F. Bassinot, C. Kissel, Y. Bault, K. Guibert, F. Dubois, C. Laj, and M. Pagel (2000) Stretching of sedimentary series collected through piston coring: evidences, implications and corrections. EOS Trans. American Geophysical Union 81, F708.
Tauxe, L. (1993) Sedimentary records of relative paleointensity of the geomagnetic field: Theory and practice. Reviews of Geophysics, 31, 319–354.
Tauxe, L., C. Luskin, P. Selkin, P. Gans, and A. Calvert (2004) Paleomagnetic results from the Snake River Plain: Contribution to the time-averaged field global database. Geochemistry, Geophysics, Geosystems, 5-8, Q08H13 10.1029/2003GC000661
Thompson, P.R., A.W. H. Be., J. -C. Duplessy, N. J. Shackleton (1979) Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans. Nature, 280, 554-558.
Thouveny, N., J. Carcaillet, E. Moreno, G. Leduc, and D.Nerini (2004) Geomagnetic moment variation and paleomagnetic excursions since 400 kyr BP: a stacked record from sedimentary sequences of the Portuguese Margin. Earth and Planetary Science Letters, 219, 377-396.
Tric, E., J. -P. Valet , P. Tucholka, M. Paterne, L. D. Labeyrie, F. Guichard, L. Tauxe, and M. Fontugne (1992) Paleointensity of the geomagnetic field during the last 80,000 years. Journal of Geophysical Research, 97, B6, 28211-28230.
Valet, J. –P., L. Meynadier, and Y. Guyodo (2005) Geomagnetic dipole strength and reversal rate over the past two million years. Nature, 435, 802-805.
Verosub, K. L., and I. Delusina (2001) Environmental Magnetic Record of ODP Site 1148 (South China Sea): Direct Correlation of Marine and Terrestrial Paleoclimate Records??. American Geophysical Union, Fall Meeting 2001, abstract #PP51B-02
Wang, P., L. Wang , Y. Bian, and Z. Jian (1995) Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles. Marine Geology, 127, 1-4, 145-165.
Wang, P., J. Tian, X. Cheng, C. Liu, and J. Xu (2003) Carbon reservoir changes preceded preceded major ice-sheet expansion at the mid-Brunhes event. Geology, 31-3, 239-242.
Weeks, R., C. Laj, L. Endignoux, M. Fuller, A. Roberts, R. Manganne, E. Blanchard, and W. Goree (1993) Improvements in long core measurement techniques: Applications in paleomagnetism and paleoceanography, Geophysical Journal International, 114, 651– 662.
Wei, K. -Y., T. –C. Chiu, and Y. -G. Chen (2003) Toward establishing a maritime proxy record of the East Asian summer monsoons for the late Quaternary. Marine Geology , 201, 1-3, 67-79.
Zijderveld, J. D. A. (1967) A. C. demagnetization of rocks. ln Methods in PaleoMagnetism,(D. W. Collinson, K. M. Creer and S. K. Runcorn, Eds), 256-286, Elservie, New York.
Zhu, R., Y. Pan, and R. S. Coe (2000b) Paleointensity studies of a lava succession from Jilin Province, northeastern China: Evidence for the Blake event. Journal of Geophysical Research, 105, B4, 8305–8317.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34222-
dc.description.abstract本研究分析南海北部岩芯MD012396之古地磁學與環境磁學訊息,目的在找出南海的古地磁場變化,並重建該地區的古環境與古氣候變化。
利用NRM/ARM模擬的古地磁場強度和Sint-800比較,輔以14C定年、氧同位素變化、Globigerinoides ruber ( pink )與Pseudoemiliania lacunosa生物末現面得到年代控制點,並建立本岩芯的年代模式,估計整根岩芯的年代約涵蓋過去46萬年,由此獲得古地磁與磁學參數隨時間變化的資訊。
古地磁學方面,本岩芯記錄過去46萬年來南海的古地磁場的長期變化,包括10次的極性異常事件,其年代和前人的報導相當一致。
環境磁學的部分,S-ratio都在0.93以上,表示磁性礦物絕大部分為低矯頑力的磁鐵礦。整體而言,反映磁性礦物含量的三個參數(磁感率、ARM、SIRM)均呈現間冰期較高(含量較多)、冰期較低(含量較少)的情形,顯示磁性礦物含量的變化,明顯反映南海的古環境(如海水面升降、雨量多寡、冬夏季風強弱)在間冰期與冰期有顯著的不同。除此之外,磁學參數在42.5萬年前和36.5萬年前有明顯的轉變,在這之間呈現漸變的過程,是氣候的轉變期。MIS 8早期的磁性礦物量偏多,同時氧同位素值偏負,表示環境較暖濕,是一個較溫暖的冰期,或與前人報導此時夏季季風較一般冰期強有關( Wei et al., 2003 )。磁學參數在MIS 7.4(約21.5~23萬年前)出現劇烈的變化:磁性礦物含量減少、氧化程度增高(S-ratio降低、HIRM增加)、ARM/驟降,呈現類似冰期的特徵,應是間冰期中的一個強烈變冷事件。本岩芯有7次磁性參數異常峰值的訊號,在時間上和南海地區岩芯MD972142(蔡榮浩,2000)的火山灰層有良好的對應關係,推斷是火山活動的紀錄。
zh_TW
dc.description.abstractPaleomagnetic and environmental magnetic methods were used to study an IMAGES core, MD012396, raised from the northern shelf of the South China Sea, in order to find out the changes of the paleomagnetic field, the paleoenvironment and the paleoclimate of this area.
Natural remanent magnetization vs anhysteresis remanent magnetization (NRM/ARM) after 20 mT alternating field demagnetization was used to simulate the paleo-intensity variation of the earth magnetic field. In addition to the 14C dating, the oxygen isotope stratigraphy, the last-appearance-datum (LAD) of Globigerinoides ruber (pink) and the LAD of Pseudoemiliania lacunosa, the obtained paleo-intensity pattern was compared to the Sint-800 curve compiled by Guyodo and Valet (1999) in order to establish the age model of this core. 10 magnetic polarity reversal events and magnetic excursions have been delimited. The results pointed out that core MD012396 could provide the information for the last 460 ka.
The parameter S-ratio has the value larger than 0.93 in general. This suggests that magnetic minerals contained in the sediments of this core dominate the low coercivity magnetite. Generally, relative higher values of some magnetic proxies, such as magnetic susceptibility (χ), saturated isothermal remanent magnetization (SIRM) and ARM, have been found during the interglacial periods than those during the glacial times since 460 ka. This implies that more abundant magnetic minerals were deposited during interglacial times than during glacial times, and shows that the environment was different during glacial periods and during interglacial periods. Besides, magnetic proxies show clear changes happened at about 425 ka and 365 ka. In between, gradual shifting has been observed. It may indicate a climate transition at this period. In the early Marine oxygen Isotope Stage 8 (MIS 8), magnetic proxies and δ18O suggest that the climate was warmer and wetter than the other glacial times. In addition, magnetic proxies show a phenomenon that low-abundance, high-oxide magnetic minerals appeared at MIS 7.4 (215~230 ka). Such behavior looks just as at a glacial period. Thus, it is considered to be a severe cooling event during this stage. Furthermore, there were 7 peak values observed from the patterns of the magnetic proxies, which might reflect the volcanic activities in the surrounding area.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:58:46Z (GMT). No. of bitstreams: 1
ntu-95-R93241302-1.pdf: 4560466 bytes, checksum: 0a6bdc7b58ea8e0431d90d3b28363292 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents誌謝 Ⅰ
中文摘要 Ⅱ
英文摘要 Ⅲ
目錄 Ⅳ
圖目錄 Ⅷ
表目錄 Ⅸ
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究區域概況 2
1.3前人研究 3
1.3.1 古地磁相對強度定年 3
1.3.2 南海地區與周邊地區的環境磁學成果 4
1.3.3 南海及周邊地區過去50萬年來的古環境變遷 5
第二章 原理 11
2.1 磁學參數 11
2.1.1 磁感率 11
2.1.2 自然殘磁 12
2.1.3 逆磁滯殘磁 13
2.1.4 等溫殘磁與相關磁學參數 13
2.1.5 ARM/χ與ARM/SIRM 15
2.2 古地磁學之研究方法 15
2.2.1 特徵殘磁的決定 15
2.2.2 古地磁相對強度的模擬 16
2.3 氧同位素變化的原理與定年的依據 17
第三章 材料與方法 21
3.1研究材料與採樣 21
3.2 磁學參數的量測與分析 21
3.2.1 磁感率 22
3.2.2 自然殘磁 22
3.2.3 逆磁滯殘磁 23
3.2.4 等溫殘磁 24
3.3 氧同位素的量測與分析 24
3.3.1 沉積物前處理 24
3.3.2有孔蟲處理 25
3.3.3 氧同位素分析 25
3.4 定年法介紹 25
3.4.1 古地磁相對定年 26
3.4.2 氧同位素相對定年 26
3.4.3 碳14絕對定年 27
3.4.4 微體化石相對定年 27
第四章 磁學參數結果 31
4.1 磁感率結果 31
4.2 逆磁滯殘磁結果 32
4.3 等溫殘磁及相關磁學參數結果 32
4.4 ARM/χ、ARM/SIRM結果 34
4.5 磁學參數特殊峰值整理 35
第五章 古地磁結果 45
5.1殘磁穩定性 45
5.2 地磁極性反轉的判斷 46
5.3古地磁場方向 46
5.3.1 磁傾角的變化 47
5.3.2 磁偏角的變化 48
5.4 古地磁場相對強度模擬 49
5.5 地磁極性異常結果整理 50
第六章 年代模式與古地磁場變動的探討 59
6.1 岩芯年代的建立 59
6.1.1 古地磁相對強度的相對定年 59
6.1.2 氧同位素地層的相對定年 60
6.1.3 碳14的絕對定年 60
6.1.4 微體化石末現面的相對定年 61
6.1.5定年結果整理 61
6.1.6岩芯的沉積速率 62
6.2 古地磁場的變動 62
第七章 環境磁學與古環境變遷的討論 77
7.1 磁性參數變化與環境變遷 77
7.1.1 磁性礦物含量隨時間的變動 77
7.1.2 磁性礦物種類隨時間的變動 78
7.1.3 磁性礦物粒度隨時間的變動 80
7.2 磁性參數變化與環境變遷的連結 80
7.3 環境磁學結果與前人研究的比較 84
7.3.1 MIS 11 氣候漸變期 84
7.3.2 MIS 8早期異常暖濕時期 85
7.3.3 MIS 7.4磁性參數異常事件 85
7.3.4 MIS 3晚期磁性異常事件 86
7.4 火成物質的輸入 87
第八章 結論 99
參考文獻 101
圖目錄
圖1.1 南海與周邊地形地形圖 7
圖1.2 間冰期與冰期南海海陸分佈變化圖 8
圖1.3 與本研究相關的南海岩芯分布圖 9
圖2.1 磁鐵礦粒徑分析圖 19
圖2.2 翟氏分量圖 20
圖2.3 翟氏分量圖的投影原理 20
圖3.1 火山灰層 29
圖3.2 U-channel取樣圖 30
圖4.1 磁感率隨岩芯深度變化圖 36
圖4.2 在設定變化範圍內磁感率隨岩芯深度變化圖 37
圖4.3 逆磁滯殘磁(ARM)隨岩芯深度變化圖 38
圖4.4 bIRM和飽和等溫殘磁(SIRM)隨岩芯深度變化圖 39
圖4.5 S-ratio隨岩芯深度變化圖 40
圖4.6 HIRM隨岩芯深度變化圖 41
圖4.7 ARM/χ與ARM/SIRM比對圖 42
圖4.8 ARM/χ隨岩芯深度變化圖 43
圖4.9 逆磁滯殘磁(ARM)對磁感率(χ)作圖 44
圖5.1 岩芯代表性樣本去磁翟氏分量圖變化趨勢圖 52
圖5.2 岩芯代表性樣本去磁強度變化趨勢圖 53
圖5.3 磁傾角(Inclination)隨岩芯深度變化圖 54
圖5.4 磁偏角(Declination)隨岩芯深度變化圖 55
圖5.5 使用不同的磁學參數對自然殘磁(NRM)進行標準化圖 56
圖5.6 使用逆磁滯殘磁標準化所得之相對強度隨岩芯深度變化圖 57
圖6.1 古地磁相對強度定年圖 71
圖6.2 氧同位素地層定年圖 72
圖6.3 碳14定年結果與G. ruber ( pink )、P. lacunosa的末現面圖 73
圖6.4 本岩芯深度-年代圖 74
圖6.5 MD012396之古地磁相對強度、磁傾角與磁偏角隨時間變化圖75
圖7.1 磁性礦物含量隨年代變化圖 90
圖7.2 磁性礦物組成隨年代變化圖 91
圖7.3 ARM/χ 隨年代變化圖 92
圖7.4 MIS 7.4時的磁感率對逆磁滯殘磁作圖 93
圖7.5 東亞其他氣候指標圖 94
圖7.6 利用不同方法計算所得南海東南部海表水溫度隨時間變化圖95
圖7.7 MD012396氧同位素與各項磁學參數隨年代變化圖 96
圖7.8 火成物質輸入的可能訊號圖 97
表目錄
表5.1 古地磁場方向與相對強度異常對照表 50
表6.1 MD012396之年代控制點一覽表 68
表6.2 各控制點間的平均沉積速率一覽表 69
表6.3 各個海洋氧同位素階之平均沉積速率一覽表 70
表6.4 MD012396極性異常事件之深度與年代對應表 70
表7.1 各種磁性參數異常對照表 87
表7.2 火成物質訊號之判別ㄧ覽表 89
dc.language.isozh-TW
dc.title南海岩芯MD012396之磁學研究:46萬年來南海的環境變遷zh_TW
dc.titleMagnetic Study of Core MD012396 from the South China Sea
- Environmental Changes of the South China Sea Since 460 ka
en
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor劉家瑄(Char-Shine Liu)
dc.contributor.oralexamcommittee魏國彥(Kuo-Yen Wei),陳明德(Min-Te Chen)
dc.subject.keyword環境磁學,古海洋學,南海,zh_TW
dc.subject.keywordenvironmental magnetism,paleoceanography,the South China Sea,en
dc.relation.page111
dc.rights.note有償授權
dc.date.accepted2006-06-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
4.45 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved