請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34212完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳振山 | |
| dc.contributor.author | Te-wei Chang | en |
| dc.contributor.author | 張德威 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:58:22Z | - |
| dc.date.available | 2006-07-07 | |
| dc.date.copyright | 2006-07-07 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-06-27 | |
| dc.identifier.citation | [1]Timoshenko, S.P., 1935, “Buckling of Flat Curved Bars and Slightly Curved Plates,” ASME Journal of Applied Mechanics, 2, pp. 17-20.
[2]Hoff, N.J., and Bruce, V.G., 1954, “Dynamic Analysis of the Buckling of Laterally Loaded Flat Arches,” Journal of Mathematics and Physics, 32, pp. 276-288. [3]Simitses, G.J., 1986, Elastic Stability of Structures, Chapter 7, R.E. Krieger Publishing Co., Malabar, Florida. [4]Simitses, G.J., 1990, Dynamic Stability of Suddenly Loaded Structures, Springer-Verlag, New York. [5]Thomsen, J.J., 1992, “Chaotic Vibrations of Non-Shallow Arches,”Journal of Sound and Vibration, 153, 239-258. [6]Bolotin, V.V., 1964, The Dynamic Stability of Elastic Systems, Holden-Day, Inc., San Francisco. [7]Tien, W.-M., Sri Namachchivaya, N., and Bajaj, A.K., 1994a, “Non-Linear Dynamics of a Shallow Arch under Periodic Excitation – I. 1:1 Internal Resonance,” International Journal of Non-Linear Mechanics, 29, 367-386. [8]Tien, W.-M., Sri Namachchivaya, N., and Bajaj, A.K., 1994b, “Non-Linear Dynamics of a Shallow Arch under Periodic Excitation – II. 1:2 Internal Resonance,” International Journal of Non-Linear Mechanics, 28, 349-366. [9]Bi, Q, and Dai, H.H., 2000, “Analysis of Nonlinear Dynamics and Bifurcations of a Shallow Arch Subjected to Periodic Excitation with Internal Resonance,” Journal of Sound and Vibration, 233, 557-571. [10]Malhotra, N, and Sri Namachchivaya, N., 1997, “Chaotic Dynamics of Shallow Arch Structures under 1:1 Resonance,” Journal of Engineering Mechanics, 123, 620-627. [11]Malhotra, N, and Sri Namachchivaya, N., 1997, “Chaotic Dynamics of Shallow Arch Structures under 1:2 Resonance,” Journal of Engineering Mechanics, 123, 612-619. [12]Chen, J.-S., and Yang, C.-H., “Experiment and Theory on the Nonlinear Vibration of a Shallow Arch under Harmonic Excitation at the End,” ASME Journal of Applied Mechanics, in press. [13]Huang, N.C., 1972, “Dynamic Buckling of Some Elastic Shallow Structures Subject to Periodic Loading with High Frequency,” International Journal of Solids and Structures, 8, 315-326. [14]Plaut R.H., and Hsieh, J.-C., 1985, “Oscillations and Instability of a Shallow Arch under Two-Frequency Excitation,” Journal of Sound and Vibration, 102, 189-201. [15]Blair, K.B., Krousgrill, C.M., and Farris, T.N., 1996, “Non-Linear Dynamic Response of Shallow Arches to Harmonic Forcing,” Journal of Sound and Vibration, 194, 353-367. [16]Chen, J.-S. and Liao, C.-Y., 2005, “Experiment and Analysis on the Free Dynamics of a Shallow Arch After an Impact Load at the End,” ASME Journal of Applied Mechanics, 72, 54-61. [17]I. S. Gradshteyn and I. M. Ryzhik, 2000, “Tables of Integrals, Series, and Products,” 6th ed. San Diego, CA : Academic Press, p.1119. [18]Richard C. Dorf and Robert H. Bishop, 1998, “Modern Control Systems,” 6th ed. Addison Wesley Longman Inc., p.238. [19]Rao, S. S., 1995, “Mechanical Vibrations,” 3rd edition, Addision-Wesley Publishing Company, Reading, Massachusetts. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34212 | - |
| dc.description.abstract | 本文以數值分析與實驗量測驗證拱形樑於端點受諧和激振作用下,將有可能發生折斷式挫曲,並持續在新的平衡位置振動。值得注意的是,我們需將激振器朝拱形樑方向移動些許距離,這是確保拱形樑將產生兩個穩定平衡位置。此外,我們在激振器與拱形樑之間外加一個彈簧做連接,這可使激振器在僅能達到有限的激振振幅下,仍能使拱形樑端點有足夠大的振幅產生,並使之能夠發生折斷式挫曲現象。在實驗方面,首先分別量測拱形樑兩個穩定平衡位置之自然頻率,調整激振頻率分別在兩個平衡位置之第一個自然頻率下做激振,透過適當的控制流經激振器之電流產生施加於激振器中央線圈的簡協磁力,可以發現拱形樑將由初始平衡位置發生折斷式挫曲至另一平衡位置,並會在新的平衡位置持續振盪。這些情況將記錄在實驗數據中,並將此實驗數據與數值模擬做比較。 | zh_TW |
| dc.description.abstract | In this paper we demonstrate, both numerically and experimentally, that it is possible to make a pinned-pinned shallow arch snap to and remain vibrating on the other side by harmonic excitation in the longitudinal direction at the end. One end of the arch is fixed in space, while the other end is attached to a mechanical shaker via a spring. The shaker mount is first moved a small distance toward the arch ends to ensure that the arch possesses two stable equilibrium positions, one on each side of the base line. The spring connecting the arch end and the mechanical shaker is carefully chosen such that small shaker stroke can induce large vibration amplitude of the arch. The natural frequencies of the two (initial and snapped, respectively) positions are measured first. By adjusting the excitation frequency of the mechanical shaker to the first natural frequency of either position of the arch, we demonstrate that the arch can be snapped to and remain vibrating on the other side when the magnitude of the electric current flowing through the shaker is properly chosen. The vibrant snapping action of the arch recorded in the experiment is confirmed by theoretical simulation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:58:22Z (GMT). No. of bitstreams: 1 ntu-95-R93522530-1.pdf: 1474096 bytes, checksum: 8184661360015a14f8b81e7cdd954c84 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 第一章 導論............................................1
第二章 實驗設備........................................4 第三章 運動方程式......................................7 第四章 平衡位置與穩定性分析...........................10 4.1 平衡位置.......................................10 4.2 平衡位置穩定性分析.............................13 第五章 外加彈簧常數k與激振器基座移動距離a.............23 第六章 自然頻率與等效阻尼.............................26 6.1 系統之自然頻率.................................26 6.2 系統等效阻尼之估計.............................27 第七章 拱形樑於端點受諧和激振時之折斷式挫曲...........30 第八章 結論...........................................33 附註...................................................35 參考文獻...............................................37 附圖目錄...............................................40 | |
| dc.language.iso | zh-TW | |
| dc.subject | 諧和激振 | zh_TW |
| dc.subject | 拱形樑 | zh_TW |
| dc.subject | 折斷式挫曲 | zh_TW |
| dc.subject | arch | en |
| dc.subject | harmonic excitation | en |
| dc.subject | snapping | en |
| dc.title | 拱形樑於端點受諧和激振時之折斷式挫曲分析與實驗 | zh_TW |
| dc.title | Snapping of a Shallow Arch under Harmonic Excitation at the End | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周元昉,盧中仁 | |
| dc.subject.keyword | 拱形樑,折斷式挫曲,諧和激振, | zh_TW |
| dc.subject.keyword | arch,snapping,harmonic excitation, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-06-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
