請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34174
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 貝蘇章 | |
dc.contributor.author | Ming-Hong Du | en |
dc.contributor.author | 杜明鴻 | zh_TW |
dc.date.accessioned | 2021-06-13T05:56:56Z | - |
dc.date.available | 2006-07-14 | |
dc.date.copyright | 2006-07-14 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-06-28 | |
dc.identifier.citation | [1] I. J. Cox, J. Kilian, F. T. Leighton and T. Shamoon, ”Secure spread spectrum watermarking for multimedia,” IEEE Trans. Image Processing, vol. 6, no. 12, pp. 1673-1687, December 1997.
[2] C. T. Hsu and J. L.Wu, ”Hidden digital watermarking in images,” IEEE Transactions on Image Processing, Vol.8, no.1, pp.56-68, Jan, 1999. [3] G. C. Langelaar and R. L. Lagendijk, ”Optimal differential energy watermarking of DCT encoded images and video,” IEEE Trans. Image Process., vol. 10, pp. 148–158, Jan. 2001. [4] S.-H. Wang and Y.-P. Lin, Wavelet tree quantization for copyright protection watermarking, IEEE Trans. on Image Processing, Vol.13, No.2, Feb. 2004. [5] P. S. L. M. Barreto, H. Y. Kim, and V. Rijmen, ”toward secure public-key blockwise fragile authentication watermarking,” Proc. Inst. Elect. Eng., vol. 149, no. 2, pp. 57-62, Apr. 2002. [6] M. U. Celik, G. Sharma, E. Saber, and A. M. Tekalp, ”Hierarchical watermarking for secure image authentication with localization,” IEEE Trans. Image Process., vol. 11, no. 6, pp. 585-589, Jun. 2002. [7] C. Y. Lin and S. F. Chang, ”Semi-fragile watermarking for authentication JPEG visual content,” Security and Watermarking of Multimedia Contents II, Proceedings of SPIE, vol. 3971, 2000. [8] I. J. Cox, M. L. Miller and J. A. Bloom, ”Watermarking Applications And Their Properties,” pro. Information Technology: Coding and Computing, pp. 6-10, March 2000. [9] A. Nikolaidias, S. Tsekeridou, A. Tefas, and V. Solachidis, ”A Survey on Watermarking Application Scenarios and Related Attacks, IEEE Int. Conf. Image processing, Vol. 3, pp. 991-994. [10] V. Potdar, S. Han, E. Chang, ”A Survey of Digital Image Watermarking Techniques”, Proceedings of the 3rd International IEEE Conference on Industrial Informatics, Perth, Western Australia, 10-12 Aug 2005. [11] I. J. Cox, M. Miller, and J. Bloom. Digital Watermarking. San Francisco, CA: Morgan Kaufmann, 2001. [12] J. Max, ”Quantizing for minimum distortion,” IRE Trans. Inform. Theory, vol. IT-6, pp. 7-12, Mar. 1960. [13] B. Chen and G. W. Wornell, ”Quantization index modulation: A class of provably good methods for digital watermarking and information embedding,” IEEE Trans. Inform. Theory, vol. 47, no. 4, pp. 1423-1443, May 2001. [14] Robert M. Gray and Jr. Thomas G. Stockham, ”Dither quantizers”, IEEE Transactions on Information Theory, 39(3), pp. 805-812, May 1983. [15] Guixing Wu and En-Hui Yang, ”Joint watermarking and compression using scalar quantization for maximizing robustness in the presence of additive Gaussian attacks”, IEEE Trans. Signal Processing, vol. 53, no. 2, pp. 834-844, Feb. 2005. [16] H. C. Hung, F. H. Wang, and J. S. Pan, ”Efficient and robust watermarking algorithm with vector quantization”, Electronic Letter, 2001, 37, (13), pp. 826-828. [17] Z. M. Lu, D. G. Xu, and S. H. Sum, ”Multipurpose image watermarking algorithm based on multistage vector quantization”, IEEE Trans. Image Processing, 2005, IP-14, (6), pp. 822-832. [18] D. Charalampidis, ”Improved robust VQ-based Watermarking”, Electronics leters, vol. 41, no.23, Nov. 2005. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34174 | - |
dc.description.abstract | 由於科技的發展與網路的進步,資訊與知識的傳播變得容易,這帶
給人們很大的方便,但也因此產生了盜版與竄改的問題。此外,數位多媒體時代的來臨,知識與創意都可以是商品,更使得版權的保護成為迫不容緩的問題。數位浮水印技術與數位簽章技術是可能的解決方案,已經引起了廣泛的研究。 在本論文中,我們提出了一個以量化為基礎的數位浮水印技術,及 一個以小波為基礎的數位簽章技術。對於以量化為基礎的數位浮水印技術,量化器的設計採用原始的Lloyd-Max 演算法,以保證量化誤差達到最小。此外,對量化器乘上某個倍數,使得此系統能在限制的量化誤差內達到最大的強韌性。在應用於影像上時,區塊DCT 的係數被用來藏入浮水印。 對於以小波為基礎的數位簽章技術,我們使用小波樹中對應相同空 間區塊的係數的統計特徵來決定極性。而數位簽章藉由與極性做互斥或運算藏入,得到的序列用來當作私密金鑰。我們提出的兩個方法對於抵抗一般的攻擊都有不錯的效果。 | zh_TW |
dc.description.abstract | Due to the rapid growth of technology and computer network, the propagation of knowledge and information becomes more easily. It brings human being much convenience, but also induces piracy and tampering. With the coming of the digital multimedia age, knowledge and creativity can be valuable products, the copyright protection becomes an important problem. Digital watermarking technique and digital signature technique are possible solutions, and there exist many related researches.
In this thesis, we will present a new digital watermarking scheme which is quantization-based and a new digital signature scheme which is wavelet-based. For the quantization-based digital watermarking, different messages are embedded by quantizing the host signals with corresponding quantizers. The designing of the quantizers adopt the conventional Lloyd-Max algorithm, which minimize the quantization distortion. Moreover, scaling the quantizers can maximize the robustness of the system under the constraint of the quantization distortion. In the applications on images, DCT coefficients are chosen to training quantizers and embed the watermark. For the wavelet-based digital signature, we use the statistics of the coefficients corresponding to the same spatial area in the wavelet tree to determine polarities. Then a signature is embedded by doing exclusive-or operation with the polarities, and the output sequence is used as a secret key. Both of two proposed method have good performance against common attacks. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T05:56:56Z (GMT). No. of bitstreams: 1 ntu-95-R93944019-1.pdf: 1290482 bytes, checksum: 54022a21a46ae6b4052cbf68a097d4d0 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 1 INTRODUCTION 1
1.1 Introduction to watermarking systems . . . . . . . . . . . . . 1 1.2 Properties of Watermarking . . . . . . . . . . . . . . . . . . . 3 1.2.1 Robustness . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 Transparency . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Unambiguity . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.4 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Copy Control . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.2 Broadcast monitoring . . . . . . . . . . . . . . . . . . . 6 1.3.3 Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.4 Content Authentication . . . . . . . . . . . . . . . . . 7 1.4 What is the difference between watermarking, steganography, and cryptography? . . . . . . . . . . . . . . . . . . . . . . . . 8 2 A QUANTIZATION-BASED WATERMARKING 11 2.1 INTORDUCTION . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 WATERMARK EMBEDDING METHOD . . . . . . . . . . . 13 2.3 WATERMARK EXTRACTING METHOD . . . . . . . . . . 14 2.4 DESIGN OF SUB-OPTIMAL QUANTIZERS . . . . . . . . . 14 2.5 APPLICATION ON COMPRESSED IMAGES . . . . . . . . 16 2.5.1 Embedding Method . . . . . . . . . . . . . . . . . . . . 17 2.5.2 Watermark Extracting Method . . . . . . . . . . . . . 17 2.6 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . 18 2.6.1 Computer Simulation on Random Sequence . . . . . . 18 2.6.2 Application on Compressed Images . . . . . . . . . . . 25 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 A Wavelet-Based Digital Signature 33 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 EMBEDDING METHOD . . . . . . . . . . . . . . . . . . . . 35 3.3 WATERMARK EXTRACTING METHOD . . . . . . . . . . 37 3.4 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.1 Why not add the coefficients in high frequency bands to the groups? . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.2 Number of levels of DWT . . . . . . . . . . . . . . . . 38 3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 39 3.5.1 No Attack . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5.2 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.5.3 Enhancement . . . . . . . . . . . . . . . . . . . . . . . 41 3.5.4 JPEG Compression . . . . . . . . . . . . . . . . . . . . 41 3.5.5 Cropping . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5.6 Noise Addition . . . . . . . . . . . . . . . . . . . . . . 42 3.5.7 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5.8 Unambiguity . . . . . . . . . . . . . . . . . . . . . . . 43 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4 Conclusions and Future Works 53 Bibliography 55 | |
dc.language.iso | en | |
dc.title | 以量化為基礎之數位浮水印技術與以小波為基礎基礎之數位簽章技術 | zh_TW |
dc.title | A Quantization-Based Digital Watermarking Scheme and a Wavelet-Based Digital Signature Scheme | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 杭學鳴,吳家麟,鍾國亮 | |
dc.subject.keyword | 數位浮水印,數位簽章, | zh_TW |
dc.subject.keyword | Digital Watermarking,Digital Signature, | en |
dc.relation.page | 57 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-06-29 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
顯示於系所單位: | 資訊網路與多媒體研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 1.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。