Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34172
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor呂育道
dc.contributor.authorHsun-Cheng Chanen
dc.contributor.author詹勳政zh_TW
dc.date.accessioned2021-06-13T05:56:52Z-
dc.date.available2006-07-10
dc.date.copyright2006-07-10
dc.date.issued2006
dc.date.submitted2006-06-28
dc.identifier.citationBibliography
[1] Barle, S. and Cakici, N. “Growing a Smiling Tree,” RISK, 10, October 1995, pp. 76-81.
[2] Barle, S. and Cakici, N. (1998). How to Grow a Smiling Tree. The Journal of Financial Engineering, 7: 127-146
[3] Black, F., and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 659-737
[4] Carr, P., and Madan, D. (1998). Determining volatility surfaces and option values from an implied volatility smile. Working Paper.
[5] Derman, E. and Kani, I. (1994a). Riding on the smile. Risk, 7(1), January, 23-39.
[6] Derman, E. and Kani, I. (1994b). The Volatility Smile and Its Implied Tree. Quantitative Strategies Research Notes. New York: Goldman Sachs.
[7] Derman, E., Kani, I., and Kamal, M. (1998). Trading and hedging local volatility. Journal of Financial Engineering, 6, 233-268
[8] Dumas, B, Fleming, J., and Whaley, R. E. (1993). Implied volatility functions: Empirical tests. Journal of Finance. 53, 2059
[9] Dupire, B. (1994). Pricing with a smile, Risk 7: 18-20
[10] Hull, John C. Options, Futures, and Other Derivatives. 5rd ed. Englewood Cliffs, New Jersey: Prentice-Hall, 2002.
[11] Jackwerth, J. C., and Rubinstein, M. (1995). Recovering probability distributions from option prices. Journal of Finance, 51, 1611-1631
[12] Lyuu, Yuh-Dauh Introduction to Financial Computation: Principles, Mathematics, Algorithms. 2001
[13] Rubinstein, M. (1994). Implied binomial trees. Journal of Finance, 49, 771-818
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34172-
dc.description.abstract從市場可以觀察到的選擇權來建構一個樹使得其可以符合市場上的微笑現象對評價來說非常重要。我們採用Barle 和 Cakici 在1998年提出的隱含二元樹,此模型修改了一些Derman和Kani在1994年提出的隱含二元樹的特徵,我門將此模型用來評價臺灣股票加權指數選擇權,其中臺指選擇權是屬於歐式選擇權。由於隱含二元樹可以在不同的到期日和執行價格符合其隱含波動率,因此可以幫助我們評價其它的新奇選擇權或是路徑相關選擇權。根據這些特性,用此模型評價出衍生性金融商品的價格會和市場的報價較一致。所以,結果顯示用此種樹模型來幫助我們評價一些新的衍生性金融商品是非常實用且市場導向的。zh_TW
dc.description.abstractABSTRACT
Building a recombining tree consistent with the volatility smile from observed options in the market is important for pricing. We adopts Barle and Cakici’s (1998) implied tree that modifies some features in Derman and Kani’s (1994) and use it to price TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) options, which are European options. Then one can price other exotic or path-dependant options by using implied binomial trees which satisfy implied volatilities under different maturities and strike prices. With this feature, the prices of derivatives will be more consistent with market quotes. Therefore, the result is a very practical and market-oriented tree model that helps us price new derivatives.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:56:52Z (GMT). No. of bitstreams: 1
ntu-95-R93922097-1.pdf: 1083491 bytes, checksum: 13cff7fbbd9e457190cec0760308dc76 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsContents
1. Introduction 2
1.1 Setting the Ground........................2
1.2 Motivations...............................3
1.3 Structure of the Thesis...................3

2. Fundamental Concepts 4
2.1 Option Basics.............................4
2.2 A Model of the Behavior of Stock Prices...6
2.3 The Black-Scholes Formula.................6
2.4 Binomial Tree Model.......................7
3. Options and Implied Volatilities 9
3.1 Implied Volatility........................9
3.2 Volatility Smile, Volatility Term Structure,
and Volatility Surface ...................9
3.3 Variable Volatility.......................9
4. Methodology 11
4.1 Local Volatility Function................11
4.2 Implied Binomial Tree....................11
4.3 Building an Implied Binomial Tree........12
5. Numeric Results..........................18
6. Conclusions..............................28
Bibliography......................................29
dc.language.isoen
dc.subject隱含波動率zh_TW
dc.subject隱含二元樹zh_TW
dc.subject二元樹zh_TW
dc.subject微笑現象zh_TW
dc.title使用隱含二元樹方法評價台指選擇權zh_TW
dc.titleImplied Binomial Tree Method for Pricing TAITEX Optionsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee金國興,戴天時
dc.subject.keyword隱含二元樹,二元樹,微笑現象,隱含波動率,zh_TW
dc.subject.keywordimplied binomial tree,binomial tree,smile,implied volatility,en
dc.relation.page29
dc.rights.note有償授權
dc.date.accepted2006-06-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
1.06 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved