請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34106完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張帆人 | |
| dc.contributor.author | Chia-Lung Cheng | en |
| dc.contributor.author | 程家龍 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:54:31Z | - |
| dc.date.available | 2006-07-07 | |
| dc.date.copyright | 2006-07-07 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-06-30 | |
| dc.identifier.citation | [1] J. Davis and J. M. Furlong, “A study examining the possibility of obtaining traceability to UK national standards using GPS disciplined oscillators,” 11th European Frequency and Time Forum, pp. 515-520, 1997.
[2] R. Dach, et al., “Continuous time transfer using PGPS carrier phase,” IEEE Trans. UFFC, vol. 49, pp. 1480-1490, 2002. [3] J. Ray and K. Senior, “IGS/BIPM pilot project: GPS carrier phase for time/frequency transfer and time scale formation,” Metrologia, vol. 40, pp. 270-288, 2003. [4] B. H. Wellenhof, H. Lichtenegger, and J. Collins, “Global positioning system: theory and practice,” New York: Springer-Verlag/Wien, 4th ed., pp. 99-109, 1997. [5] J. Ray, “New timing products from the IGS: IGS/BIPM time transfer pilot project and UT1-like estimates from GPS,” Proc. IVS Meeting, 2000. [6] P. Mistra and P. Enge, “Global positioning system: signals, measurements, and performance,” Massachusetts: Ganga/Jamuna Press, 1st ed., pp. 132-137, 2001. [7] J. A. Klobuchar, “Ionosphere effects on GPS, in global positioning system: theory and application,” American Institute of Aeronautics and Astronautics, pp 485-515, 1996. [8] J. C. De Jong, “GPS-satellite orbits and atmospheric effects,” Delft University of Technology, 1991. [9] A. H. Dodson, “Refraction and propagation delays in space geodesy,” International Journal of Remote Sensing, vol. 7, pp. 515-524, 1986. [10] S. P. Newby and R. B. Langely, “Three alternative empirical ionospheric models-Are they better than the GPS broadcast model,” Proceeding of the 6th International Symposium on Satellite Positioning, Columbus, Ohio, 1992. [11] S. K. Llewellyn and R. B. Bent, “Documentation and description of the Bent ionospheric model,” IAFCRL-TR-73-0657, AD772733, 1973. [12] K. Rawer, “International reference ionosphere-IRI79,” World Data Center A for Sol.-Terr. Phys., Rep. UAG-82, Boulder, Colorado, USA, 1981. [13] D. Bilitza, “NSSDCC 90-22,” World Data Center A, Rockets & Satellites, Greenbelt, USA, 1990. [14] D. Bilitza, K. Rawer, L. Bossy, and T. Gulyaeva, “International reference ionosphere – past, present, and future: electron density,” Advanced Space Research, vol. 13, pp. (3)3-(3)13, 1993. [15] D. Bilitza, “International reference ionosphere 2000,” Radio Science, vol. 36, pp. 261-275, 2001. [16] T. Urban, C. Shum, G. Kruizinga, B. Tapley, D. Bilitza, and D. Yuan, “Comparison of ionospheric models for single-frequency radar altimeters,” Advanced Space Research, vol. 20, pp. 1769-1772, 1997. [17] J. A. Klobuchar, “Ionospheric corrections for the single frequency user of the global positioning system,” IEEE National Telesystems Conference: Systems for the Eighties, Galveston, Texas, 1982. [18] S. P. Newby, R. B. Langely, and H. W. Janes, “Ionospheric modeling for single frequency users of the global positioning system,” Proceeding of the 2nd International Symposium on Precise Positioning with GPS, Ottawa, Canada, 1990. [19] J. Feltens and S. Schaer, “IGS products for the ionosphere,” Proceeding of the IGS Analysis Center Workshop, ESA/ESOC, pp. 225-232, Germany, 1998. [20] S. Schaer, “Generating Klobuchar-style ionospheric coefficients for single-frequency real-time and post-processing users,” Astronomical Institute, University of Berne, Switzerland, 2001. [21] R. Leitinger, H. P. Ladreiter, and G. Kirchengast, “Ionosphere tomography with data from satellite reception of global navigation satellites signals and ground reception of navigation satellite system signals,” Radio Science, vol. 32, pp. 1657-1669, 1997. [22] E. Sardon, A. Rius, and N. Zarraoa, “Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from global positioning system observation,” Radio Science, vol.29, pp. 577-586, 1994. [23] G. E. Lanyi and T. Roth, “A comparison of mapped and measured total ionospheric electron content using global positioning system and beacons satellite observations,” Radio Science, vol. 23, pp. 483-492, 1988. [24] F. Kleijer, “Troposphere modeling and filtering for precise GPS leveling,” Geodesy 56, Netherlands Geodetic Commission, Delft University of Technology, pp. 39-47, 2004. [25] S. Milton, I. Culverwell, G. Greed, and M. Willett, “Improving tropical performance - diagnosing errors in the new unified model (cycle G27),” Forecasting Research Technical Report, no. 401, UK, 2003. [26] J. Braun, C. Rocken, and R. Ware, “Validation of single slant water vapor measurements with GPS,” Radio Science, vol. 36, pp. 459-472, 2001. [27] RTCA Special Committee 159 Working Group 2, “Minimum operational performance standards for global positioning system / wide area augmentation system airborne equipment,” RTCA, Document Number DO-229A, June 1998. [28] J. Saastamoinen, “Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites,” The Use of Artificial Satellites for Geodesy, Geophysics. Monograph. Series 15 edited by S. W. Henriksen et al., pp. 247-251, Washington D.C., 1972. [29] C. C. Goad and L. Goodman, “A modified Hopfield tropospheric refraction correction model,” the American Geophysical Union Annual Fall Meeting, San Francisco, Califórnia, 1974. [30] V. B. Mendes and R. B. Langley, “Tropospheric zenith delay prediction accuracy for airborne GPS high-precision positioning,” Proceedings of the Institute of Navigation 54th Annual Meeting, pp. 337-347, Denver, CO, U.S.A., 1998. [31] M. Bevis, S. Businger, S. R. Chiswell, T. A. Herring, A. Anthes, C. Rocken, and R. Ware, “GPS meteorology: mapping zenith wet delays onto precipitable water,” Journal of Applied Meteorology, vol. 33, pp. 379-386, 1994. [32] O. Bock, E. Doerflinger, F. Masson, A. Walpersdorf, J. van Baelen, J. Tarniewicz, M. Troller, A. Somieski, A. Geiger, and B. Bürki., “GPS water vapor project associated to the ESCOMPTE programme: description and first results of the field experiment,” Physics and Chemistry of the Earth, vol. 29, pp.149-157,2004. [33] E. Hafner, “Resonator and device measurements,” Precision Frequency Control, vol. 2 (E. A. Gerber and A. Ballato, eds.), Academic Press, pp. 1-44, 1985. [34] L. lewis, “An introduction to frequency standards,” Proc. IEEE, vol.79, pp. 927-935, 1991. [35] BIPM, “Annual report of the BIPM time section,” vol. 8, pp. 17-19, 1995. [36] D.A. Howe, D.W. Allan, and J.A. Barnes, “Properties of signal sources and measurement methods,” Proc. 35th Annu. Symp. on Freq. Contrl., pp. 1-47, 1981. [37] V. S. Zhang, D. D. Davis, and M. A. Lombardi, “High resolution time interval counter,” Precise Time and Time Interval Conf. (PTTI), pp. 191-200, 1994 [38] D. B. Sullivan, D. W. Allan, D .A. Howe, and F. L. Walls (Editors), “Characterization of Clocks and Oscillators”, NIST Technical Note 1337, U.S. Department of Commerce, National Institute of Standards and Technology, March 1990. [39] C. A. Greenhall, “A method for using a time interval counter to measure frequency stability,” Proc. 41st Ann. Frequency Control Symposium, pp. 126-135, 1987. [40] S. R. Stein, “Frequency and time - their measurement and characterization”, Precision Frequency Control, vol. 2, Edited by E.A. Gerber and A. Ballato, Academic Press, New York, pp.191-416, 1985. [41] D. W. Allan, “Time and frequency (time domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Transaction on Ultrasonic, Ferroelectrics and Frequency Control, vol. UFFC-34, pp. 647-654, 1987. [42] Radio communication Bureau, “Hand book selection and use of precise frequency and time systems,” International Telecommunication Union (ITU), pp.51-77, 1997. [43] IEEE Standards Coordinating Committee 27, “IEEE standard definitions of physical quantities for fundamental frequency and time metrology-random instabilities,” IEEE std. 1139-1999, July 1999. [44] J. A. Barnes, “Tables of bias functions, B1 and B2, for variances based on finite samples of processes with power law spectral densities,” National Bureau of Standards (U.S.) Tech. Note 375, Jan. 1969. [45] J. A. Barnes and D. W. Allan, “Variances based on data with dead-time between the measurements: theory and tables,” National Bureau of Standards (U.S.) Tech. Note 1318, 1988. [46] P. Lesage and C. Audoin, “Correction to: characterization of frequency stability: uncertainty due to finite number of measurements,” IEEE Transactions on Instrumentation and Measurement, vol. IM-23, pp. 157-161, 1973. [47] D. A. Howe, D. W. Allan, and J. A. Barnes, “Properties of signal sources and measurement methods,” Proceedings of the 35th Annual Symposium on Frequency Control, pp. 669-717, 1981. [48] S. R. Stein, “Frequency and time: their measurement and characterization,” Precision Frequency Control, Academic Press, vol. 2, pp. 191-232, 1985. [49] W. J. Riley and C. A. Greenhall, “Power law noise identification using lag1 autocorrelation,” Proc. 18th Eur. Frequency Time Forum (EFTF). [Online] Available: http://www.wriley.com/Paper125Preprint.pdf [50] Hamilton Technical Services, “Stable32 user manual,” Frequency Stability Analysis Software, Version 1.44, 2004. [51] International Organization for Standardization, “International vocabulary of basic and general terms in metrology,” 2nd ed., 1993. [52] M. A. Lombardi, “Traceability time and frequency metrology,” CAL LAB: The International Journal of Metrology, pp. 33-40, 1999. [53] C. D. Ehrlich and S. D. Rasberry, “Metrological timelines in traceability,” Metrologia, vol. 34, pp. 503-514, 1997. [54] J. A. Davis and J. M. Furlong, “Report on the study to determine the suitability of GPS disciplined oscillators as time and frequency standards traceable to the UK National Time Scale UTC (NPL),” Nat. Phys. Lab. (NPL) Report, CTM 1, June 1997. [55] M. A. Lombardi, L. M. Nelson, A. N. Novick, and V. S. Zhang, “Time and frequency measurements using the global positioning system,” Cal. Lab. Int. J. Metrology, pp. 26-33, 2001. [56] A. Gifford, S. Pace, and J. McNeff, “One-way GPS time transfer,” Proceedings of the 32nd Annual Precise Time and Time Interval Meeting (PTTI), pp. 137-146, 2000. [57] T. E. Parker and D. Matsakis, “Time and frequency dissemination: advances in GPS transfer techniques,” GPS World, pp. 32-38, 2004. [58] D. W. Allan and M. A. Weiss, “Accurate time and frequency transfer during common-view of a GPS satellite,” Proceedings of the 34th Annual Frequency Control Symposium, pp. 334-346, May 1980. [59] L. Nelson, J. Levine, and P. Hetzel, “Comparing primary frequency standards at NIST and PTB,” Proceedings of the 2000 IEEE/EIA International Frequency Control Symposium and Exhibition, pp. 622-628, 2000. [60] K. Larson and J. Levine, “Carrier-phase time transfer,” IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, vol. 46, pp. 1001-1012, 1999. [61] K. Y. Tu, F. R. Chang, C. S. Liao, and L. S. Wang, “Frequency syntonization using GPS carrier phase measurements,” IEEE Transaction on Instrumentation and Measurement, vol. 50, pp. 833-838, 2001. [62] C. W. J. Granger and P. Newbold, “Forecasting economic time series,” Academic Press, 2nd ed., pp. 1-121, San Diego, 1986. [63] W. R. Foster, “Neural network forecasting of short, noisy time series,” Computers Chem. Engng., vol. 16, pp. 293-297, 1992. [64] H. S. Hippert, “Neural networks for short-term load forecasting: a review and evaluation,” IEEE Trans. on Power Systems, vol. 16, pp. 44-54, 2001. [65] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp.179-211, 1990. [66] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights,” Information Systems Laboratory, Standford University, CA 94305, pp. III21-III26, 1990. [67] S. Haykin, “Neural networks- a comprehensive foundation,” Macmillan College Publishing Company, pp 121-157, 1994. [68] M. T. Hagan, H. B. Demuth, and M. H. Beale, “Neural network design,” Boston, MA: PWS Publishing, pp 1-105, 1996. [69] F. M. Ham and I. Kostanic, “Principles of neurocomputing for science and engineering,” McGraw-Hill, pp.1-62, 2001. [70] A. Grossman and J. Morlet, “Decomposition of hardy functions into square integrable wavelets of constant shape,” SIAM J. Math. Anal., vol. 15, pp. 723-736, 1984. [71] Y. Meyer, “Wavelets: algorithms and applications,” SIAM, Philadelphia, 1993. Translated by R. D. Ryan. [72] S. Mallat “Zero-crossings of a wavelet transform,” IEEE Trans. Inform. Theory, vol. 37, 1991. [73] I. Daubechies, “Orthonormal bases of compactly supported wavelets,” Comm. Pure and Applied Mathematics, vol. 41, pp. 909-996, 1988. [74] S. Mallat, “A theory of multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, pp. 674-693, 1989. [75] S. Mallat, “Multiresolution approximation and wavelets,” Trans. of American Math. Soc., vol. 315, pp.69-88, 1989. [76] R. A. Gopinath and C. S. Burrus, “Wavelets and filter banks. Wavelets: a tutorial in theory and applications,” Academic Press, pp. 603-654, 1992. [77] R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for best basis selection,” IEEE Trans. on Inf. Theory, vol. 38, pp. 713-718, 1992. [78] G. Strang and T. Nguyen, “Wavelets and filter banks,” Wellesley-Cambridge Press, pp. 101-361, 1996. [79] A. P. Bradley, “Shift-invariance in the discrete wavelet transform,” Proc. 7th Digital Image Computing: Technology and Applications, pp. 29-34, 2003. [80] A. Gyaourova, C. Kamath, and I. K. Fodor, “Undecimated wavelet transform for image de-noising,” Lawrence Livermore National Laboratory technical report, UCRL-ID- 150931, 2002. [81] G. P. Nason and B. W. Silverman, “Stationary wavelet transform and some statistical applications,” Technical Report of Department of Mathematics, University of Bristol, U.K., 1995. [82] The MathWorks, Inc., “Matlab: wavelet toolbox,” User’s Guide, Version 3.02, Mar. 2005. [83] H. M. Peng, C. S. Liao, and J. K. Hwang, “Performance testing of time comparison using GPS-smoothed P3 code and IGS ephemeredes,” IEEE Trans. on Instrumentation and Measurement, vol. 54, pp.825-828, 2005. [84] Private comment of Prof. L. S. Wang, RM.325, IAM, NTU, Taiwan, Sep. 2004. [85] M. Smith, “Neural networks for statistical modeling,” John Wiley & Sons, Inc, New York, USA, pp. 133-150, Mar. 1993. [86] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bulletin of Mathematical Biophysics, vol. 5, pp.115-133, 1943. [87] H. S. Stern, “Neural networks in applied statistics,” Technometrics, vol. 38, pp. 205-214, 1996. [88] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in the brain,” Psychological Review, vol. 65, pp. 386-408, 1959. [89] F. Rosenblatt, “Principles of neurodynamics,” Spartan Books, New York, 1962. [90] B. Widrow and M. E. Hoff, “Adaptive switching circuits,” IRE WESCON Convention Record, vol. 4, pp. 96-104, 1960. [91] M. Minsky and S. Papert, “Perceptrons,” MA, MIT Press, Cambridge, 1969. [92] R. J. Schalkoff, “Artificial neural networks,” McGraw-Hill, New York, 1997. [93] B. D. Ripley, “Neural networks and related methods for classification,” Journal of the Royal Statistical Society, Series B, Methodological, vol. 56, pp. 409-456, 1994. [94] E. Patuwo, M. Y. Hu, and M. S. Hung, “Two-group classification using neural networks,” Decision Sciences, vol. 24, pp. 825-845, 1993. [95] B. Warner and M. Misra, “Understanding neural networks as statistical tools,” The American Statistician, vol. 50, pp. 284-293, 1996. [96] T. M. Mitchell, “Machine learning,” WCB/McGraw Hill, Boston, 1997. [97] H. Ney, “On the probabilistic interpretation of neural network classifiers and discriminative training criteria,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, pp. 107-119, 1995. [98] A. Lapedes and R. Farber, “Nonlinear signal processing using neural network: prediction and system modeling,” Los Alamos National Lab Technical Report, LA-UR-87-2662, 1987. [99] Y. Yoon, G. Swales, and T. M. Margavio, “A comparison of discriminant analysis versus artificial neural networks,” Journal of the Operational Research Society, vol. 44, pp. 51-60, 1993. [100] V. Subramanian, M. S. Hung, and M. Y. Hu, “An experimental evaluation of neural networks for classification,” Computers and Operations Research, vol. 20, pp. 769-782, 1993. [101] D. Mitchie, D. J. Spiegelhalter, C. C. Taylor, and J. F. Elder, “Machine learning, neural, and statistical classification,” Journal of the American Statistical Association, vol. 91,pp. 436-438, 1994. [102] 葉宜成, “應用類神經網路,” 第三版, 儒林圖書公司, 3-13∼3-14頁, 2001年。 [103] 黃胤年, “1988在台灣的電離層及地磁研究,” 電工雙月刊, 第31卷, 第四期, 281-294頁, 1988年。 [104] 黃胤年, “台灣電離層觀測與研究,” 黃胤年博士論文集, 交通部電信總局電信訓練所彙編, 1257-1269頁, 1996年。 [105] 電信訓練所, “中壢電離層觀測報告,” TTI-D vol. 30, no. 7-9, 交通部電信總局, 7-9月, 1989年。 [106] 蔡和芳, “全球定位系統觀測電離層赤道異常之研究,” 國立中央大學太空科學研究所博士論文, 6月, 1999年。 [107] 許文榮, “電離層日出前之層峰變化,” 國立中央大學太空科學研究所碩士論文, 5月, 1997年。 [108] 黃建華, “運用GPS觀測量建構台灣北部地區電離層遲延效應修正模式,” 國立交通大學土木工程學系碩士論文, 6月, 1996年。 [109] 蔡和芳, “全球定位系統觀測電離層全電子含量,” 國立中央大學太空科學研究所碩士論文, 5月, 1995年。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34106 | - |
| dc.description.abstract | 本論文介紹利用單頻接收機及GPS載波相位觀測量所組成一低成本且高精度的頻率同步系統(GPS 載波相位訓練振盪器)。此頻率同步系統符合具有追溯至國際時頻標準能力(GPS時間)。此外;本系統可以當作第二層時頻標準,應用於頻率同步及精密量測等工作場所或系統之中。如果在無動態智慧型適應預測濾波器作用下,其輸出在一良好頻率參考源比較下,可以當作即時大氣層變動參考,應用在地震預測或氣象學研究上。
為估測一爐控晶體振盪器相對於GPS時間頻率偏差,我們將此爐控晶體振盪器以外頻輸入至一單頻GPS接收機內,藉以取代原來內建單頻接收機振盪器所產生之基頻訊號。因此,爐控晶體振盪器之頻率特性將表現在我們所使用之載波相位觀測量上。然後,對所有可視衛星,利用GPS載波相位在兩個不同觀測時間點,進行時間(一次)差分,如此我們將可估測爐控晶體振盪器相對於GPS時間平均頻率偏差。由於此種單方向直接式單頻接收機之頻率同步系統,主要之影響來自於大氣層之變動延遲。因此,我們提出一新穎動態智慧型適應預測濾波器來降低大氣層影響。修正後平均頻率偏差估測利用一切換式控制器經由數位類比轉換,構成一個大型相鎖迴路系統,控制爐控晶體振盪器輸出。此濾波器之內部參數,是使用一個在理想環境控制下原級鐘,作連續八日單機載波相量觀測,並紀錄個別衛星即時頻率偏差估測,將此估測學習目標送至使用者後,使用者針對每一顆衛星,來進行廣義化訓練調整。 此動態智慧型適應預測濾波器可以用於改善區域性即時大氣層變動延遲影響。在建構時,可以隨著使用者觀測環境作適應性的調整。使用操作上簡單。在大氣層無受重大因素改變之情況下,具有可以每天更新連續使用的強健性。此外;智慧型適應預測濾波器與GPS所廣播的庫爾巴卡電離層群延模式;經由GPS載波相位頻率同步系統比較驗證後顯示;智慧型適應預測濾波器於區域性應用中,其中長期頻率穩定度優於庫爾巴卡即時電離層校正模式。頻率同步系統在動態智慧型適應預測濾波器作用下(GPS載波相位訓練振盪器);以爐控晶體振盪器10MHz輸出為例;其相對於銫原子鐘10MHz參考頻率,其一天頻率偏差估測值可以從10 等級改善至10 等級,而相對頻率穩定度(修改亞倫方差)也能有從10 等級至10 等級提升。再者; GPS 載波相位訓練振盪器於區域性應用中,其短中期(10s~10000s)頻率穩定度優於商用GPS訓練振盪器。在實際應用上,此智慧型適應預測濾波器使用分散式適應建構過程,對於一般使用者而言,所提供的大氣層變動延遲修正量,改善了頻率同步性能;同時減輕了國家計量研究院(NMI)於設備購置上的成本。龐大計算量也因此建構程序,合理的平均分配給每位使用者。 | zh_TW |
| dc.description.abstract | A low-cost, highly-accurate GPS carrier phase frequency syntonization system (GPS carrier phase-disciplined oscillator, GPSCDO) based on a single-frequency receiver is presented. The scheme can allow traceability to the international time and frequency as disseminated by the GPS. The system can be used in stratum II time/frequency standards, such as site syntonization systems, event measurement, etc. Furthermore, the GPSCDO can monitor atmospheric variations applied to earthquake prediction or meteorology when the dynamic intelligent adaptive forecasting filter is turned off.
To estimate the average frequency offsets of an oscillator with respect to the GPS, the oscillator was connected to a time/frequency GPS receiver to replace its original oscillator. Hence, the behavior of the oscillator was determined from the GPS carrier phase observations. The average frequency offsets of the oscillator with respect to the GPS could be estimated by performing difference operations on carrier phase observations of all satellites in view between two measurement epochs. To reduce the interference of the atmospheric delay, a real-time dynamic intelligent adaptive forecasting filter (DIAFF) was proposed. The corrected average frequency offsets were then used by the switch controller to steer the OCXO through a D/A converter. The parameters of the DIAFF were obtained according to the results of an eight-day experiment, in which the GPS carrier phase observations of a stand-alone configuration with a primary clock are recorded for each satellite. The DIAFF can be available to correct locally (smaller than 50 Km) average atmospheric differential delays in real time. The circumstances of the users can be considered in creation of the DIAFF. The DIAFF is available easily and provides day-to-day robustness under regular atmosphere. In addition, the DIAFF is better than the Klobuchar model from the frequency stability analyses of the medium term and long term in the local area. The GPSCDO with the DIAFF can be improved on the estimates of normalized frequency offset of the OCXO with respect to the Cs. clock from the order of 10 to that of 10 and the frequency stability (MDEV) from the order of 10 to that of 10 over 24 hours. Furthermore, the GPSCDO with the DIAFF is better than the commercial GPS disciplined oscillator (GPSDO) from the frequency stability analyses of the short term (10s) and medium term (10000s) in the local area. The decentralized adaptive atmospheric delay correction processes improve frequency syntonization performance of the users, and reduce the cost of the apparatus for the National Metrology Institute (NMI). In addition, a great quantity of computation can be distributed over the users equally. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:54:31Z (GMT). No. of bitstreams: 1 ntu-95-F88921021-1.pdf: 3462717 bytes, checksum: 5237fbd9d8afc10ee9eeed51de95325c (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Abstract………………………………………………………………………….…………………….i
Contents………………………………………………………………………………………v List of Figures……………………………………………………………...………….………………….viii List of Tables………………………………………………………….…………….……..xvi Chapter 1 Introduction…………………………………………………………………….1 1.1 Motivation………………………………………………...…………...………..…………2 1.2 Literature Review……………………………………………..……………….………….4 1.2.1 Ionospheric Delay………………………………………………………………….…….4 1.2.2 Tropospheric Delay………………………………………………………..…………………...……….7 1.2.3 Neural Networks…………………………………………………………..…………………......…….10 1.3 Scope of Research…………………………………………………………………………..…..13 1.3.1 Pure Neural Network Model for the Time Series Filter……………………………..….……………..13 1.3.2 NN Model with Wavelet Enhancement for the Time Series Filter…………………………………....14 1.4 Thesis Organization……………………..………………………………………...………..….15 Chapter 2 Time and Frequency Metrology……………….……………………….…16 2.1 Characteristics of Oscillators and Clocks…………………………...………..……..…16 2.1.1 Quality Factor, Q………………………………...………………………..…………..………....…….19 2.1.2 Hydrogen Maser………………………………………………………..…………………...……....…20 2.1.3 Cesium Beam Oscillator………………………………………………..…………………...……....…22 2.1.4 Rubidium Oscillator………………………………………………..…………………...………......…24 2.1.5 Quartz Oscillator…………………………………………..……...…………………….………......…25 2.2 Definition of Time Interval and Frequency……………………………………..…………..…..30 2.2.1 Astronomical Time Scales………………………………..…………………...…...… ….31 2.2.2 Modified Julian Day (MJD)………………….……………………….……………………..35 2.2.3 Realization of TAI…………….………………………………………….…………...…..37 2.2.4 Coordinated Universal Time (UTC) and Leap Seconds…………………….……..……...…..40 2.3 Time Domain Frequency and Time Measurement…………………………………….43 2.4 Mathematical Models of Timing Signal……………………………………………………...…..49 2.5 Frequency Accuracy and Stability……………………………………………………….......52 2.5.1 Frequency Accuracy in Frequency and Time Domain…………………..……………......…..53 2.5.2 Time Domain Frequency Stability Analyses…………………..……………….……......…..55 2.6 Frequency Traceability…………..…………………………………………….…………......59 Chapter 3 Time and Frequency Dissemination Using GPS…………...……....…66 3.1 One-Way GPS Time and Frequency Dissemination……………………....………..…70 3.2 Common-View GPS Time and Frequency Dissemination………………..…...………....74 3.3 Carrier Phase GPS Time and Frequency Dissemination……………….………..……...77 3.4 Mathematical Model for GPS Time and Frequency Dissemination…………………...81 Chapter 4 Dynamic Forecasting Filters of the Atmospheric Differential Delays…………………………………..……………………..….....87 4.1 Dynamic Neural-Wavelet Forecasting Filter………......................………..………..….87 4.1.1 Recurrent Neural Network……………………………………………………………………….…….87 4.1.1.1 Details of Our Elman Recurrent Neural Networks…………………..……………….………..……….….92 4.1.1.2 Adaptive Adjustment of Weightings and Biases……………………………..……………...……..........…94 4.1.2 Wavelet Transform………………………………………...………..…………….…………….……..99 4.1.3 Neural-Wavelet Forecasting Filter……………………...………………………….............................104 4.1.3.1 Parameters Determination of the Neural-Wavelet Forecasting Filter……………………….……......…...107 4.1.3.2 Simple Verification for the Ability of the Neural-Wavelet Forecasting Filter……..………………...........111 4.2 Dynamic Intelligent Adaptive Forecasting Filter………………...…………………...…..116 4.2.1 Design of the Intelligent Adaptive Forecasting Filter……………………………….….....................122 4.2.2 Parameters Determination of the Intelligent Adaptive Forecasting Filter………................................127 Chapter 5 GPS Carrier Phase-Disciplined Oscillator……….…………..…….….129 5.1 Configuration of the Carrier Phase-Disciplined Oscillator……..………….…...……...129 5.1.1 Estimation of Static Precise Antenna Position…..…………………………………...........................131 5.1.2 Specifications of the GPSCDO Experiments…..………………..……………...................................132 5.1.3 Design of the Switch Controller Using the TIC with the Primary Clock.…………………................143 5.2 Experiments on the Commercial GPSDO….………………….………………...…..……150 5.3 Experiments on the GPSCDO….……………………….…….…………………...…..……153 5.3.1 GPSCDO without Atmospheric Delay Corrections…..……………………………...........................155 5.3.2 GPSCDO Using the Real-Time Broadcasting Klobuchar Model…………………............................163 5.3.3 GPSCDO Using the Real-Time Intelligent Adaptive Forecasting Filter……........................................166 5.3.3.1 Zero Distance Experiment…………………………....……………………...…………………..…....….167 5.3.3.2 39-Km Distance Experiment………………………………………………………….……....….…....…170 5.4 Comparisons between the GPSCDO and the GPSDO……………………….….…...175 Chapter 6 Conclusions and Future Works……….………………………….…..…183 6.1 Concluding Remarks……..………………………………………………………………….183 6.2 Future Works….……………………………………………………………………….184 Bibliography……………………………………………………………………………...189 Appendix…………………………………………………………………………………………200 | |
| dc.language.iso | en | |
| dc.subject | 時頻應用 | zh_TW |
| dc.subject | 頻率同步 | zh_TW |
| dc.subject | 全球衛星定位系統 | zh_TW |
| dc.subject | GPS | en |
| dc.subject | Frequency Syntonization | en |
| dc.subject | Time and Frequency Application | en |
| dc.title | GPS載波相位結合動態智慧型適應預測濾波器在頻率同步之應用 | zh_TW |
| dc.title | GPS Carrier Phase Frequency Syntonization with the Dynamic Intelligent Adaptive Forecasting Filter | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李祖添,林君明,唐望,蕭師基,涂昆源,王立昇,曹恆偉 | |
| dc.subject.keyword | 全球衛星定位系統,頻率同步,時頻應用, | zh_TW |
| dc.subject.keyword | GPS,Frequency Syntonization,Time and Frequency Application, | en |
| dc.relation.page | 202 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-03 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 3.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
