Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34096
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶源
dc.contributor.authorMin-Hao Yuanen
dc.contributor.author袁明豪zh_TW
dc.date.accessioned2021-06-13T05:54:11Z-
dc.date.available2011-07-29
dc.date.copyright2011-07-29
dc.date.issued2011
dc.date.submitted2011-07-26
dc.identifier.citationAndreeva, D., T. Tabakova, L. Ilieva, A. Naydenov, D. Mehandjiev and M.V. Abrashev, Nanosize gold catalysts promoted by vanadium oxide supported on titania and zirconia for complete benzene oxidation. Appl. Catal. A-Gen., 209(1-2), 291-300 (2001).
Arno, J., J.W. Bevan and M. Moisan, Detoxification of trichloroethylene in a low-pressure surface wave plasma reactor. Environ. Sci. Technol., 30(8), 2427-2431 (1996).
Atkinson, R., S.M. Aschmann, J. Arey, B. Zielinska, D. Schuetzle, Gas-phase atmospheric chemistry of 1- and 2-nitronaphthalene and 1,4-naphthoquinone. Atmos. Environ., 23 (12), 2679-2690 (1989).
Atkinson, R., D.L. Baulch, R.A. Cox, R.F. Hampson, J.A. Kerr and J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data, 21, 1125-1568 (1992).
Bampenrat, A., V. Meeyoo, B. Kitiyanan, P. Rangsunvigit, T. Rirksomboon, Catalytic oxidation of naphthalene over CeO2-ZrO2 mixed oxide catalysts. Catal. Comm., 9, 2349-2352 (2008).
Bartholomew, C.H., Mechanism of catalyst deactivation. Appl. Catal. A-Gen., 212(1-2), 17-60 (2001).
Benson, S.W. and A.E. Axworthy, Mechanism of the gas phase, thermal decomposition of ozone. J. Chem. Phys., 26(6), 1718-1726 (1957).
Berty, J.M., Testing commercial catalysts in recycle reactors. Catal. Rev.-Sci. Eng., 20, 75-96 (1979).
Bittner, J.D. and J.B. Howard, Composition profiles and reaction mechanisms in a nearsooting premixed benzene/oxygen/argon flame. Eighteenth Symposium (International) on Combustion, the Combustion Institute, Pittsburgh, 1105-1116 (1981).
Bokova, M., C. Decarne, E. Abi-Aad, A. Pryakhin, V. Lunin and A. Aboukais, Effects of ozone on the catalytic combustion of carbon black. Appl. Catal. B-Environ., 54(1), 9-17 (2004).
Bond, G.C., Heterogeneous Catalysis: Principles and Applications. 2nd Ed., Oxford University Press, Oxford, UK (1990).
Bove, J.L. and J. Arrigo, Formation of polycyclic aromatic hydrocarbon via gas phase benzyne. Chemosphere, 14(1), 99-101 (1985).
Bubnov, A.G., V.I. Grinevich, S.N. Aleksandrova and V.V. Kostrov, Polymerization of phenol vapor in a barrier-discharge plasma. High Energ. Chem., 31(4), 264-267 (1997).
Bulanin, K.M., A.V. Alexeev, D.S. Bystrov, J.C. Lavalley and A.A. Tsyganenko, IR study of ozone adsorption on SiO2. J. Phys. Chem., 98(19), 5100-5103 (1994).
Bulanin, K.M., J.C. Lavalley and A.A. Tsyganenko, Infrared study of ozone adsorption on TiO2 (anatase). J. Phys. Chem., 99(25), 10294-10298 (1995a).
Bulanin, K.M., J.C. Lavalley and A.A. Tsyganenko, IR-spectra of adsorbed ozone. Colloids Surf. A, 110(2-3), 153-158 (1995b).
Calderbank, P.H. and J.M.O. Lewis, Ozone-decomposition catalysis. Chem. Eng. Sci., 31(12), 1216-1216 (1976).
Chang, C.Y., W.T. Tsai, L. Cheng, C.Y. Chiu, W.H. Huang, Y.H. Yu, H.T. Liou, Y. Ku and J.N. Chen, Catalytic decomposition of ozone by Pt/Al2O3 and MnO2. J. Environ. Sci. Heal. A, 32(6), 1837-1847 (1997).
Chang, J.S., Recent development of plasma pollution control technology: A critical review. Sci. Technol. Adv. Mater., 2, 571-576 (2001).
Carno, J., M. Berg and S. Jaras, Catalytic abatement of emissions from small-scale combustion of wood - A comparison of the catalytic effect in model and real flue gases. Fuel, 75(8), 959-965 (1996).
Chae, J.O., V. Demidiouk, M. Yeulash, I.C. Choi and T.G. Jung, Experimental study for indoor air control by plasma-catalyst hybrid system. IEEE Trans. Plasma Sci., 32(2), 493-497 (2004).
Chen, H.L., H.M. Lee, S.H. Chen, M.B. Chang, S.J. Yu and S.N. Li, Removal of Volatile Organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications. Environ. Sci. Technol., 43(7), 2216-2227 (2009).
Christensen, E. and X. Zhang, Source polycyclic aromatic hydrocarbons to Lake Michigan determined from sedimentary records. Environ. Sci. Technol., 27(1), 139-146 (1993).
Davies, I.W., R.M Harrison, R. Perry, D. Ratnayaka and R.A Wellings, Municipal incinerator as source of polynuclear aromatic-hydrocarbons in environment. Environ. Sci. Technol., 10(5), 451-453 (1976).
Demidiouk, V. and J.O. Chae, Decomposition of volatile organic compounds in plasma-catalytic system. IEEE Trans. Plasma Sci., 31(1), 157-161 (2005).
Dhandapani, B and S.T. Oyama, Gas phase ozone decomposition catalysts. Appl. Catal. B-Environ., 11(2), 129-166 (1997).
Dimitrova, S., G. Ivanov and D. Mehandjiev, Metallurgical slag as a support of catalysts for complete oxidation in the presence of ozone. Appl. Catal. A-Gen., 266(1), 81-87 (2004).
DiPalo, C., P. DeStefanis, M. Massa and R. Montani, Emission of polycyclic aromatic hydrocarbons (PAH) from solid waste incinerator equipped with an after-combustion chamber. Polycycl. Aromat. Comp., 9(1-4), 45-51 (1996).
Dipple, A., M.A. Pigott, S.K. Agarwal, H. Yagi, J.M. Sayer, O.M. Jerina, Optically active benzo[c]phenanthrene diol epoxides bind extensively to adenine in DNA. Nature, 327(6122), 535-536(1987).
Einaga, H. and. S. Futamura, Comparative study on the catalytic activities of alumina-supported metal oxides for oxidation of benzene and cyclohexane with ozone. React. Kinet. Catal. Lett., 81(1), 121-128 (2004a).
Einaga, H. and S. Futamura, Catalytic oxidation of benzene with ozone over alumina-supported manganese oxide. J. Catal., 227(2), 304-312 (2004b).
Einaga, H., M. Harada and. S. Futamura, Structural changes in alumina-supported manganese oxides during ozone decomposition. Chem. Phys. Lett., 408(4-6), 377-380 (2005).
Einaga, H. and S. Futamura, Oxidation behavior of cyclohexane on aluminasupported manganese oxides with ozone. Appl. Catal. B: Environ. 60 (2005) 49-55.
Einaga, H. and A. Ogata, Benzene oxidation with ozone over supported manganese oxide catalysts: Effect of catalyst support and reaction conditions. J. Hazard. Mater., 164, 1236-1241 (2009).
Everaert, K. and J. Baeyens, Catalytic combustion of volatile organic compounds. J. Hazard. Mat., 109, 113-139 (2004).
Ferrandon, M. and E. Bjornbom, Hydrothermal stabilization by lanthanum of mixed metal oxides and noble metal catalysts for volatile organic compound removal. J. Catal., 200(1), 148-159 (2001).
Finlayson-Pitts, B.J. and N.J. Pitts, Atmospheric Chemistry: Fundamentals and Experimental Techniques, John Wiley & Sons, Inc., New York (1986).
Francke, K.P., H. Miessner and R. Rudolph, Plasmacatalytic processes for environmental problems. Catal. Today, 59(3-4), 411-416 (2000a).
Francke, K.P., H. Miessner and R. Rudolph, Cleaning of air streams from organic pollutants by plasma-catalytic oxidation. Plasma Chem. Plasma P., 20(3), 393-403 (2000b).
Fraser, M.P., G.R. Cass, B. Simoneit and R.A. Rasmussen, Air quality model evaluation data for organics. 5. C6–C22 nonpolar and semipolar aromatics compounds. Environ. Sci. Technol., 32(12), 1760-1770 (1998).
Frenklach, M., D.W. Clary, W.C. Gardiner and S.E. Stein, Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. Twentieth Symposium (International) on Combustion, the Combustion Institute, Pittsburgh, 887-901 (1985).
Froment, G.F. and K.B. Bischoff, Chemical Reactor Analysis and Design. 2nd Ed., Wiley, New York (1990).
Fogler, H.S., Elements of Chemical Reaction Engineering. 3rd Ed., Prentice-Hall International, Inc., New Jersey (1999).
Garcia, T., B. Solsona and S.H. Taylor, Nano-crystalline ceria catalysts for the abatement of polycyclic aromatic hydrocarbons. Catal. Lett., 105(3-4), 183-189 (2005).
Garcia, T., B. Solsona, D. Cazorla-Amoros, A. Linares-Solano and S.H. Taylor, Total oxidation of volatile organic compounds by vanadium promoted palladium-titania catalysts: Comparison of aromatic and polyaromatic compounds. Appl. Catal. B-Environ., 62(1-2), 66-76 (2006a).
Garcia, T., B. Solsona and S.H. Taylor, Naphthalene total oxidation over metal oxide catalysts. Appl. Catal. B-Environ., 66(1-2), 92-99 (2006b).
Gervasini, A., C.L. Bianchi and V. Ragaini, Low-temperature catalytic combustion of volatile organic compounds using ozone. ACS Symp. Ser., 552, 353-369 (1994).
Gervasini, A., G.C. Vezzoli and V. Ragaini, VOC removal by synergic effect of combustion catalyst and ozone. Catal. Today, 29(1-4), 449-455 (1996).
Gervasini, A. and V. Ragaini, Catalytic technology assisted with ionization/ozonization phase for the abatement of volatile organic compound. Catal. Today, 60(1-2), 129-138 (2000).
Grabowski, R., Kinetics of oxidative dehydrogenation of C2-C3 alkanes on oxide catalysts. Catal. Rev.-Sci. Eng., 48, 199-268 (2006).
Griscom, D.L., Optical properties and structure of defects in silica glass. J. Ceram Soc. Jpn., 99(10), 923-942 (1991).
Hall, M., D.K. Parker, P.L. Grover, J.Y. Lu, N.E. Hopkins and W.L. Alworth, Effects of 1-ethynylpyrene and related inhibitors of P450 isozymes upon benzo(a)pyrene metabolism by liver micrososmes. Chem.-Biol. Interact., 76(2), 181-192(1990).
Haynes, B.S. and H.G. Wagner, Soot formation. Prog. Energy Combust., 7(4), 229-273 (1981).
Henderson, T.R., J.D. Sun, A.P. Li, R.L. Hanson, W.E. Bechtold, T.M. Harvey, J. Shabanowltz and D.F. Hunt, GC/MS and MS/MS studies of diesel exhaust mutagenicity and emissions from chemically defied fuels. Environ. Sci. Technol., 18(6), 428-434 (1984).
Hodnett, B.K., Heterogeneous Catalytic Oxidation: Fundamental and Technological Aspects of the Selective and Total Oxidation of Organic Compounds. John Wiley & Sons, New York (2000).
Holzer, F., U. Roland and F.D. Kopinke, Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds. Part 1. Accessibility of the intra-particle volume. Appl. Catal. B-Environ., 38(3), 163-181 (2002).
Hsieh, L.T., W.J. Lee, C.T. Li, C.Y. Chen, Y.F. Wang and M.B. Chang, Decomposition of carbon dioxide in the RF plasma environment. J. Chem. Technol. Biot., 73(4), 432-442 (1998a).
Hsieh, L.T., W.J. Lee, C.Y. Chen, Y.P.G. Wu, S.J. Chen and Y.F. Wang, Decomposition of methyl chloride by using an RF plasma reactor. J. Hazard. Mater., 63(1), 69-90 (1998b).
Hutchings, G.J., M.S. Scurrell and J.R. Woodhouse, Direct partial oxidation of methane: Effect of the oxidant on the reaction. Appl. Catal., 38(1), 157-165 (1988).
Hunter, P. and S.T. Oyama, Control of Volatile Organic Compound Emissions: Conventional and Emerging Technologies. John Wiley & Sons, Inc., New York (2000).
Imamura, S., M. Ikebata, T. Ito and T. Ogita, Decomposition of ozone on a silver catalyst. Ind. Eng. Chem. Res., 30(1), 217-221 (1991).
International Agency for Research on Cancer (IARC), Agents Reviewed by the IARC Monographs: Vol. 1-94, http://monographs.iarc.fr/ENG/Classification/litagentscas nos.pdf (Sept. 2006).
Integrated Risk Information System (IRIS), IRIS Database for Risk Assessment, USEPA, http://www.epa.gov/iris/index.html (Sept. 2006).
Jacob, J. and G. Grimmer, Metabolism of polycyclic aromatic hydrocarbons, in environmental carcinogens: Polycyclic aromatic hydrocarbon, In G. Grimmer (Ed.), Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons. Chemistry, Occurrence, Biochemistry, Carcinogenicity. CRC Press Inc., Boca Raton, FL, pp.137 (1983).
Johansson, I. and B. van Bavel, Levels and patterns of polycyclic aromatic hydrocarbons in incineration ashes. Sci. Total Environ., 311(1-3), 221-231 (2003).
Jones, K.C., J.A. Stratford, K.S. Waterhouse and N.B. Vogt, Organic contaminants in welsh soils: polynuclear aromatic hydrocarbons. Environ. Sci. Technol., 23(5), 540-550 (1989).
Josephson, J., Polynuclear aromatic hydrocarbons. Environ. Sci. Technol., 15(1), 20-22 (1981).
Khalili, N.R., P.A. Scheff and T.M. Holsen, PAH source fingerprints for coke ovens, diesel and gasoline-engines, high way tunnels, and wood combustion. Atmos. Environ., 29(4), 533-542 (1995).
Kim, H.H., G. Prieto, K. Takashima, S. Katsura and A. Mizuno, Performance evaluation of discharge plasma process for gaseous pollutant removal. J. Electrostatics, 55(1), 25-41 (2002).
Klingstedt, F., A.K. Neyestanaki, L.E. Lindfors, T. Salmi, T. Heikkila and E. Laine, An investigation of the activity and stability of Pd and Pd-Zr modified Y-zeolite catalysts for the removal of PAH, CO, CH4 and NOx emissions. Appl. Catal. A-Gen., 239(1-2), 229-240 (2003).
Koutsospyros, A.D., S.M. Yin, C. Christodoulatos and K. Becker, Plasmochemical degradation of volatile organic compounds (VOC) in a capillary discharge plasma reactor. IEEE Trans. Plasma Sci., 33(1), 42-49 (2005).
Ledesma, E.B., M.A. Kalish, P.F. Nelson, M.J. Wornat and J.C. Mackie, Formation and fate of PAHs during the pyrolysis and fuel-rich combustion of coal primary tar. Fuel, 79(4), 1801-1814 (2000).
Lee, W.J., Y.F. Wang, T.C. Lin, Y.Y. Chen, W.C. Lin, C.C. Ku and J.T. Chen., PAH characteristics in the ambient air of traffic-source. Sci. Total Environ., 159(2-3), 185-200 (1995).
Lee, W.J., C.Y. Chen, W.C. Lin, Y.T. Wang and C.J. Chin, Phosgene formation from the decomposition of 1,1-C2H2Cl2 contained gas in an RF plasma reactor. J. Hazard. Mater., 48(1-3), 51-67 (1996).
Levenspiel, O., Chemical Reaction Engineering. 3rd Ed., Wiley, New York (1999).
Li, W., G.V. Gibbs and S.T. Oyama, Mechanism of ozone decomposition on a manganese oxide catalyst. 1. In situ Raman spectroscopy and ab initio molecular orbital calculations. J. Am. Chem. Soc., 120(35), 9041-9046 (1998).
Li, W. and S.T. Oyama, Mechanism of ozone decomposition on a manganese oxide catalyst. 2. Steady-state and transient kinetic studies. J. Am. Chem. Soc., 120(35), 9047-9052 (1998).
Liljelind, P., J. Unsworth, O. Maaskant and S. Marklund, Chemosphere, Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction. 42(5-7), 615-623 (2001).
Lin, T.C., F.H. Chang, J.H. Hsieh, H.R. Chao and M.R. Chao, Characteristics of polycyclic aromatic hydrocarbons and total suspended particulate in indoor and outdoor atmosphere of a Taiwanese temple. J. Hazard. Mater., 95(1-2), 1-12 (2002).
Lu, R., J. Wu, R.P. Turco, A.M. Winer, R. Atkinson, J. Arey, S.E. Paulson, F.W. Lurmann, A.H. Miguel and A. Eiguren-Fernandez, Naphthalene distributions and human exposure in a Southern California. Atmos. Environ., 39(3), 489-507 (2005)
Malik, M.A., A. Ghaffar and S.A. Malik, Water purification by electrical discharges. Plasma Sources Sci. Technol., 10(1), 82-91 (2001).
Masel, R.I., Chemical Kinetics and Catalysis, John Wiley and Sons, New York (2001).
Mehandjiev, D. and A. Naydenov, Ozone decomposition on alpha-Fe2O3 catalyst. Ozone Sci. Tech., 14(4), 277-282 (1992).
Mehandjiev, D., E. Zhecheva, G. Ivanov and R. Ioncheva, Preparation and catalytic activity of nickel-manganese oxide catalysts with an ilmenite-type structure in the reactions of complete oxidation of hydrocarbons. Appl. Catal. A: Gen., 167(2), 277-282 (1998).
Mehandjiev, D., A. Naydenov and G. Ivanov, Ozone decomposition, benzene and CO oxidation over NiMnO3-ilmenite and NiMn2O4-spinel catalysts. Appl. Catal. A-Gen., 206(1), 13-18 (2001).
Mehandjiev, D., K. Cheshkova, A. Naydenov and V. Georgesku, Catalytic oxidation of CO and C6H6 on alumina-supported Cu-Cr and Co-Cr oxide catalysts in the presence of ozone. React. Kinet. Catal. Lett., 76(2), 287-293 (2002).
Naydenov, A. and D. Mehandjiev, Complete oxidation of benzene on manganese dioxide by ozone. Appl. Catal. A-Gen., 97(1), 17-22 (1993).
Naydenov, A., R. Stoyanova and D. Mehandjiev, Ozone decomposition and CO oxidation on CeO2. J. Mol. Catal. A-Chem., 98(1), 9-14 (1995).
Neeb, P., O. Horie and G.K. Moortgat, Formation of secondary ozonides in the gas-phase ozonolysis of simple alkenes. Tetrahed. Lett., 37(52), 9297-9300 (1996)
Ndifor, E.N., T. Garica and S.H. Taylor, Naphthalene oxidation over vanadium-modified Pt catalysts supported on γ-Al2O3. Catal. Lett., 110(1-2), 125-128 (2006).
Nojima, H., P. E. Park, J. H. Kwon, I. Suh, J. Jeon, E. Ha, H. K. On, H. R. Kim, K. H. Choi, K. H. Lee, B. L. Seong, H. Jung, S. J. Kang, S. Namba and K. Takiyama, Novel atmospheric pressure plasma device releasing atomic hydrogen: Reduction of microbial-contaminants and OH radicals in the air. J. Phys. D: Appl. Phys., 40(2), 501-509 (2007).
Ntainjua, E., T. Garcia and S.H. Taylor, Naphthalene oxidation over vanadium-modified Pt catalysts supported on γ-Al2O3. Catal. Lett., 110(1-2), 125-128 (2006a).
Ntainjua, E., B. Solsona, D. Cazorla-Amoros, A. Linares-Solano and S.H. Taylor, Total oxidation of volatile organic compounds by vanadium promoted palladium-titania catalysts: Comparison of aromatic and polyaromatic compounds. Appl. Catal. B: Environ., 62(1-2), 66-76 (2006b).
Ntainjua, E., A.F. Carley and S.H. Taylor, The role of support on the performance of platinum-based catalysts for the total oxidation of polycyclic aromatic hydrocarbons. Catal. Today, 137(2-4), 362-366 (2008).
Ogata, A., K. Yamanouchi, K. Mizuno, S. Kushiyama and T. Yamamoto, Decomposition of benzene using alumina-hybrid and catalyst-hybrid plasma reactors. IEEE Trans. Ind. Appl., 35(6), 1289-1295 (1999).
Ogoh, K., C. Yamanaka, M. Ikeya and E. Ito, Two-center model for radiation induced aluminum hole center in stishovite. J. Phys. Chem. Solids, 57(1), 85-88 (1996).
Oyama, S.T., Chemical and catalytic properties of ozone. Catal. Rev.-Sci. Eng., 42(3), 279-322 (2000).
Pearse, R.W.B. and A.G. Gaydon, The Identification of Molecular Spectra. Chapman & Hall Ltd., London, UK (1963).
Pieck, C.L., C.A. Querini and J.M. Parera, Influence of O2 and O3 regeneration on the metallic phase of the Pt-Re/Al2O3 catalyst. Appl. Catal. A-Gen., 165(1-2), 207-218 (1997).
Pieck, C.L., C.R. Vera, C.A. Querini and J.M. Parera, Differences in coke burning-off from Pt–Sn/Al2O3 catalyst with oxygen or ozone. Appl. Catal. A-Gen., 278(2), 173-180 (2005).
Provinciaal Centrum voor Milieuonderzoek. Beproevingsverlag 83rPAN 311rMPDP. Province of East Flanders, Antwerp (1997).
Radhakrishnan, R. and S.T. Oyama, Ozone decomposition over manganese oxide supported on ZrO2 and TiO2: A kinetic study using in situ laser Raman spectroscopy. J. Catal., 199(2), 282-290 (2001).
Ragaini, V., C.L. Bianchi, G. Forcella and A. Gervasini, A comparison between the catalytic combustion of volatile organic compounds (VOC) with and without ozone to reduce the industrial air pollution. I. Not halogenated organic compounds. In L. Bonati, U. Cosentino, M. Lasagni, G. Moro, D. Pitea, and A. Schiraldi (Eds.). Trends in Ecological Physical Chemistry. Elsevier, Amsterdam (1993).
Roland, U., F. Holzer and F.D. Kopinke, Improved oxidation of air pollutants in a non-thermal plasma. Catal. Today, 73(3-4), 315-323 (2002).
Rosocha, L.A. and R.A. Korzekwa, Advanced oxidation and reduction processes in the gas phase using non-thermal plasma. J. Adv. Oxid. Technol. 4, 247-264 (1999).
Saliba, N.A., Y.L. Tsai, C. Panja and B.E. Koel, Oxidation of Pt(111) by ozone (O3) under UHV conditions. Surf. Sci., 419, 79-88 (1999).
Sasaki, J., S.M. Aschmann, E.S.C. Kwok, R. Atkinson and J. Arey, Products of the gas-phase OH and NO3 radical-initiated reactions of naphthalene. Environ. Sci. Technol., 31(11), 3173-3179 (1997).
Satterfield, C.N., Heterogeneous Catalysis in Industrial Practice, 2nd Ed., McGraw-Hill, Inc., New York (1991).
Seinfeld, J.H., Air pollution: A half century of progress. AIChE J., 50(6), 1096-1108 (2004).
Sharma, R., R.D. Rimmer, J. Gunamgari, R.S. Shekhawat, B.J. Davis, M.K. Mazumder and D.A. Lindquist, Plasma-assisted activation of supported Au and Pd catalysts for CO oxidation. IEEE Trans. Ind. Appl., 41(5), 1373-1376 (2005).
Shie, J.L., C.Y. Chang, J.H. Chen, W.T. Tsai, Y.H. Chen, C.S. Chiou and C.F. Chang, Catalytic oxidation of naphthalene using a Pt/Al2O3 catalyst. Appl. Catal. B-Environ., 58(3-4), 289-297 (2005).
Spivey, J.J., Complete catalytic oxidation of volatile organics. Ind. Eng. Chem. Res., 26(11), 2165-2180 (1987).
Suzuki, S., Y. Hori, and O. Koga, Decomposition of ozone on natural sand. Bull. Chem. Soc. Jpn., 52(10), 3103-3104 (1979).
Taylor, P.H., B. Dellinger and C.C. Lee, Development of a thermal stability based ranking of hazardous organic compound incinerability. Environ. Sci. Technol., 24(3), 316-328 (1990).
Tezuka, M. and T. Yajima, Oxidation of aromatic hydrocarbons with oxygen in a radiofrequency plasma. Plasma Chem. Plasma P., 16(3), 329-340 (1996).
Thomas, K., P.E. Hoggan, L. Mariey, J. Lamotte and J.C. Lavalley, Experimental and theoretical study of ozone adsorption on alumina. Catal. Lett., 46(1-2), 77-82 (1997).
Tsai, W.T., C.Y. Chang, F.H. Jung, C.Y. Chiu, W.H. Huang, Y.H. Yu, H.T. Liou, Y. Ku, J.N. Chen and C.F. Mao, Catalytic decomposition of ozone in the presence of water vapor. J. Environ. Sci. Heal. A, 33(8), 1705-1717 (1998).
UNECE (United Nations Economic Commission for Europe), Kiev Protocol on Pollutant Release and Transfer Registers, http://www.unece.org/env/pp/prtr.htm. (Dec. 2005)
Yamanouchi, T., S. Komura and K. Yagi, Serum lipid peroxide levels of albino rats administered naphthalene. Biochem. Int., 13(1), 1-6 (1986)
Yang, H.H., R.C. Jung, Y.F. Wang and L.T. Hsieh, Polycyclic aromatic hydrocarbon emissions from joss paper furnaces. Atmos. Environ., 39(18), 3305-3312 (2005).
Yang, K.H. and O.A. Hougen, Determination of mechanism of catalyzed aseous reactions. Chem. Eng. Prog. 46 (3), 146-157 (1950).
Wang, Y.F., W.J. Lee, C.Y. Chen and L.T. Hsieh, Reaction mechanisms in both a CHF3/O2/Ar and CHF3/H2/Ar radio frequency plasma environment. Ind. Eng. Chem. Res., 38(9), 3199-3210 (1999a).
Wang, Y.F., W.J. Lee, C.Y. Chen and L.T. Hsieh, Decomposition of dichlorodifluoromethane by adding hydrogen in a cold plasma system. Environ. Sci. Technol., 33(13), 2234-2240 (1999b).
Weber, R., T. Sakurai and H. Hagenmaier, Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts. Appl. Catal. B-Environ., 20(4), 249-256 (1999).
Wu, P.F., T.A. Chiang, L.F. Wang, C.S.Chang and Y.C. Ko, Nitro-polycyclic aromatic hydrocarbon contents of fumes from heated cooking oils and prevention of mutagenicity by catechin. Mutat. Res., 403(1-2), 29-34 (1998).
Xi, Y., C. Reed, Y.K. Lee and S.T. Oyama, Acetone oxidation using ozone on manganese oxide catalysts. J. Phys. Chem. B., 109(37), 17587-17596 (2005).
Yuan, M.H., W.C. Liao, C.Y. Chang, J.L. Shie, C.C. Chang and W.K. Tu, Catalytic oxidation of vinyl chloride using a Pt/Al2O3 catalyst with and without ozone. 101th AWMA Conf., Portland, OR, A404 (2008).
Zhang, X.W., S.C. Shen, L.E. Yu, S. Kawi, K. Hidajat and K.Y.S. Ng, Oxidative decomposition of naphthalene by supported metal catalysts. Appl. Catal. A-Gen., 250(2), 341-352 (2003).
Zhang, X.W., S.C. Shen, K. Hidajat, S. Kawi, L.E. Yu and K.Y.S. Ng, Naphthalene oxidation over 1%Pt and 5%Co/γ-Al2O3 catalysts: Reaction intermediates and possible pathways. Catal. Lett. 96(1-2), 87-96 (2004).
王慶元,觸媒結合脈衝放電系統處理甲苯氣體之研究,國立交通大學環境工程所碩士論文,新竹,臺灣,2002。
王曉萍,大氣電漿束之特性分析,國立清華大學物理學系,新竹,臺灣,2005。
李灝銘,以低溫電漿去除揮發性有機物之研究,國立中央大學環境工程研究所博士論文,桃園,臺灣,2001。
陳家豪,以觸媒分解氣相中萘之研究,國立臺灣大學環境工程學研究所碩士論文,台北,臺灣,2004。
史順益,苯於高週波電漿中之反應,國立成功大學環境工程研究所博士論文,2005。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34096-
dc.description.abstract本研究以臭氧與電漿輔助觸媒氧化破壞去除氣相有機污染物。研究選定的目標物種為在多環芳香族 (polycyclic aromatic hydrocarbons, PAHs) 中化學結構最簡單、揮發性最高、且為氣相PAH污染物最具有代表性的萘 (naphthalene, Nap)。破壞去除方法包括臭氧觸媒氧化程序 (ozone-catalytic oxidation process, OZCO)、大氣電漿噴射束 (atmospheric-pressure plasma jet, APPJ) 及觸媒大氣電漿噴射束 (catalytic-APPJ, CAPPJ) 等之新穎技術。
OZCO程序分解Nap實驗主要系統參數為反應溫度 (T)、空間流速 (space velocities, SV)及O3進流濃度 (inlet concentrations of ozone, CO3,in)。實驗結果顯示在相同Nap轉化率 (conversion, XNap) 下,反應所需溫度隨著CO3,in增加而降低。此外,XNap及其礦化率 (mineralization extent, MNap) 與CO3,in的增加呈現線性關係。比較XNap到達50%之反應所需溫度 (T50) 結果,CO3,in = 1,750 ppmv及SV = 100,000 1/h時,T50為460 K,低於相同條件無臭氧添加時之T50 (480 K)。反應動力模式考慮CNap,in及CO3,in之二階反應方程式,以描述Nap在Pt/γ-Al2O3觸媒與O3之反應行為。其活化能 (E) 及頻率因子 (Af) 為68.3 kJ/mol及5.36×1012 L2/(mol g-cat. s)。與CO3,in為零時之觸媒氧化程序活化能 (150.0 kJ/mol) 相比,E約降低了2.2倍。CO3,in = 0時,其Af為3.26×1017 1/s。對實際工程應用,降低反應所需溫度,即降低在高溫燃燒所需之操作成本。另外,MNap的增加表示觸媒的完全氧化能力增加,因而積碳量亦減少。故OZCO方法可應用於實際工業界之廢氣焚化系統,且其反應動力參數能提供工程設計使用。
探討APPJ及CAPPJ程序分解Nap/n-butanol (Nap/n-b),n-butanol及vinyl chloride (VC) 時,其實驗主要系統參數為輸入功率 (input power, PWI)、電漿能量密度 (plasma energy density, Ē)、污染物初始濃度 (C0或Cin)、工作氣體 (air與air/Ar) 及觸媒之SV。分析APPJ尾氣之光譜圖顯示主要活性氧物種為氧原子及介穩態 (metastable) 氧分子 (230-330 nm)。不同工作氣體之光譜圖顯示Ar離子會與污染物Nap/n-b激烈碰撞,在600-800 nm產生可見光波峰,因此電漿系統溫度 (plateau temperature, TP) 也比單獨air為工作氣體時高。另外,TP隨著PWI增加而增加,表示電漿能量從加速電子轉移到氣體介質,促使電漿氣體TP提高。當觸媒量增加 (即SV減低或接觸時間增長),其TP降低。此現象表示觸媒吸附許多活性物質及帶電粒子在其表面上,造成氣相上的能量轉移減少。
APPJ實驗結果顯示TP受到PWI (或Ē) 之影響,PWI越高TP越高,目標污染物轉化率亦提高。結合Pt/γ-Al2O3觸媒之CAPPJ系統能有效提升其對污染物之分解效率及反應速率。在相同PWI下,觸媒量增加 (即SV減低或接觸時間增長),則污染物轉化率提升。在air/Ar的Nap/n-b系統,當PWI = 250 W及無觸媒時,其XNap及Xn-b分別為30%及19%。而相同PWI及SV = 26,400 1/h時,其轉化率Xn-b及XNap分別高達96%及98%以上;在SV = 17,400 1/h,XNap及Xn-b可到達99%以上。比較單成份n-butanol系統,其Xn-b與雙成份Nap/n-b之Xn-b無明顯差異。此外,污染物初始濃度較高,其轉化率較低。例如,在air系統中,當PWI = 250 W而無觸媒時,CVC,in = 200 ppmv及450 ppmv之XVC分別為14.0%及5.4%。在PWI = 250 W且SV = 17,400 1/h時,CVC,in = 200 ppmv及450 ppmv時之XVC分別為49%及39%。
本研究亦提出單獨APPJ電漿程序及結合觸媒之CAPPJ操作程序分解Nap、n-butanol及VC之動力模式,以建立C/C0與各系統參數間之關係。模擬結果與實驗結果具有良好符合度。污染物初始濃度在APPJ電漿系統之反應動力階數為–1.5;於CAPPJ之反應物初始濃度及觸媒量之反應動力階數分別為–0.5及1。所提出之動力模式能有效描述反應行為,並提供電漿設備之操作設計使用。
zh_TW
dc.description.abstractThis study investigated ozone- and plasma-assisted catalytic oxidation for the decomposition of gaseous organic compound in gas phase. Naphthalene (Nap), the most volatile, simple structured and abundant polycyclic aromatic hydrocarbons (PAHs) observed in the atmosphere, is taken as a target compound. The processes examined include the ozone catalytic oxidation (OZCO) and radio frequency-powered atmospheric-pressure plasma jet (APPJ) oxidation and APPJ with Pt/γ-Al2O3 catalysts, noted as catalytic APPJ (CAPPJ) oxidation.
The OZCO experiments were carried out at various constant reaction temperatures (T), space velocities (SV) and inlet concentrations of ozone (CO3,in) for the decomposition of Nap. The results indicate that the required T for the effective decomposition of Nap decreases with the increase in CO3,in at the same conversion level of Nap (XNap). Further, the values of XNap and mineralization extent of Nap (MNap) increase linearly with the increase of CO3,in. Regarding the T at XNap = 50% (T50), there is about 20 K reduction at SV = 100,000 1/h for the case of OZCO process with CO3,in of 1,750 ppmv (T50 = 460 K) compared to the process without ozone (T50 = 480 K). Further, the power law can be applied to describe the data of OZCO process by using the second order expression with respect to ozone and Nap concentration. The observed activation energy (E) and frequency factor (Af) are 68.3 kJ/mol and 5.36×1012 L2/(mol g-cat. s), respectively. For the sole catalytic oxidation process (CATO), the reaction is first order respect to Nap with E and Af of 150.0 kJ/mol and 3.26×1017 1/s. A significant reduction of E for the OZCO compared to CATO reflects the enhancement role of ozone in conjunction with catalyst.
The APPJ experiments were carried out at various input power (PWI), plasma energy density (Ē), initial concentration of pollutant (C0 or Cin), working gas (air and air/Ar) and SV of the catalyst for the decomposition of Nap/n-butanol (Nap/n-b), n-butanol and vinyl chloride (VC). The emission spectra of APPJ discharge show that the oxygen atom and metastable oxygen molecule (230-330 nm) are possibly the dominated active species in the jet effluent. The visible glow (600-800 nm) results from the interaction of discharged Ar molecule and Nap/n-b. It turns out that the value of plateau temperature (TP) of reactor in the presence of Ar is higher than that in air. Further TP increases with PWI because of more energy transfer from the heated electrons to gas molecules. However, TP decreases in the presence of the catalysts. It suggests that the role of the catalyst acts as a conducting medium with low electrical resistance and high surface area, absorbing charged as well as active species for the catalytic decomposition.
The effectiveness of plasma-assisted catalysis is evident as indicated by the increase of conversion and rate constant. At PWI = 250 W without catalyst, the values of XNap and Xn-b are 30% and 19%, respectively. In the presence of Pt/Al2O3 catalyst with SV = 17,400 1/h, XNap and Xn-b can reach as high as 99%. Note that the Xn-b in Nap/n-b is close to XN-b in n-butanol system. Therefore, the interaction of Nap and n-butanol is minor in APPJ and CAPPJ. The conversion decreases with increasing initial concentration. For example, at PWI = 250 W without catalyst, the values of XVC are 14% and 5.4% for CVC,in = 200 and 450 ppmv, respectively. At PWI = 250 W with SV = 17,400 1/h, XVC for CVC,in = 200 and 450 ppmv are 49% and 39%, respectively.
The kinetic models were proposed to describe the relationships of C/C0 (or =C/Cin) with the major parameters for the plasma and plasma-assisted catalytic decomposition of Nap, n-butanol and VC, showing good agreement with the experimental data. For the plasma system of APPJ the reaction order is –1.5 with respect to Cin, while –0.5 and 1 with respect to Cin and catalyst amount, respectively, for the plasma-catalysis system of CAPPJ.
The information obtained is useful for the rational design and operation for the destruction of gaseous pollutants via the OZCO, APPJ and CAPPJ processes.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:54:11Z (GMT). No. of bitstreams: 1
ntu-100-F92541110-1.pdf: 1935373 bytes, checksum: e503b319cb9878761684154c2bfd5430 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝 i
摘要 iii
ABSTRACT v
TABLE OF CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi
NOMENCLATURE xiv
CHAPTER 1. INTRODCUTION 1
CHAPTER 2. LITERATURE REVIEWS 6
2.1 Overview of PAHs 6
2.2 Current Technologies for Treatment of Gaseous PAHs 10
2.3 Basic Principles of Heterogeneous Catalysis 13
2.3.1 Definition and Mechanism 13
2.3.2 Kinetic Models of Catalytic Oxidation 17
2.3.1 Deactivation Phenomena 21
2.4 Catalytic Oxidation of Gaseous PAHs 23
2.5 Principles of Ozone-Catalytic Oxidation Process 27
2.5.1 Thermal and Catalytic Decomposition of Ozone 27
2.5.2 Influences of Catalysts and Target Compounds 30
2.6 Non-thermal Plasma-assisted Catalytic Decomposition Process 41
PAGE
2.6.1 Introduction of Plasma 41
2.6.2 Non-thermal Plasma for the Decomposition of Gaseous Pollutants 42
2.6.3 Plasma Catalysis for the Decomposition of Gaseous Pollutants 48
2.6.4 Kinetic Models of Plasma Decomposition 49
3 EXPERIMENTAL SECTION 55
3.1 Materials 55
3.2 Experimental System 57
3.2.1 Apparatus of OZCO 57
3.2.2 Apparatus of APPJ and CAPPJ 59
3.3 Analytical Methods 63
3.3.1 Gas Chromatography-Flame Ionization Detector (GC-FID) 66
3.3.2 Gas Chromatography-Thermal Conductivity Detector (GC-TCD) 67
3.4 Definition of Parameters 68
4 RESULTS AND DISCUSSION 70
4.1 Catalytic and Thermal Decomposition of O3 70
4.2 Performance of Oxidation of Nap via OZCO Process 72
4.3 Kinetics of Oxidation of Nap via OZCO Process 75
4.4 Light Emission and Applied Voltage from the APPJ Discharge 85
4.4.1 The light emission spectra 85
4.4.2 The applied voltage and temperature profile 86
4.5 Performance of Decomposition of Nap/n-butanol via APPJ Process 89
4.6 Performance of Decomposition of VC via APPJ Process 95
PAGE
4.7 Plasma Kinetics Model for Decomposition of Pollutant via APPJ
and CAPPJ 100
5 CONCLUSIONS AND SUGGESTIONS 107
5.1 Conclusions 107
5.2 Suggestions 108
REFERENCES 110
APPENDICES
A. Kinetic Models for Catalytic Oxidation A1
B. VITA B1
dc.language.isozh-TW
dc.title以臭氧與電漿輔助觸媒氧化去除氣相萘之研究zh_TW
dc.titleOzone- and Plasma-assisted Catalytic Oxidation for the Destruction of Gaseous Naphthaleneen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee蔣本基,張奉文,李俊福,章裕民,徐啟銘
dc.subject.keyword多環芳香族,萘,鉑金/氧化鋁觸媒,臭氧觸媒氧化程序,大氣電漿噴射束,zh_TW
dc.subject.keywordPolycyclic aromatic hydrocarbons (PAHs),naphthalene,Pt/Al2O3,ozone-catalytic oxidation process,atmospheric-pressure plasma jet (APPJ),en
dc.relation.page118
dc.rights.note有償授權
dc.date.accepted2011-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
1.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved