請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34092
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖中明 | |
dc.contributor.author | Chao-Fang Chang | en |
dc.contributor.author | 張兆芳 | zh_TW |
dc.date.accessioned | 2021-06-13T05:54:02Z | - |
dc.date.available | 2006-07-10 | |
dc.date.copyright | 2006-07-10 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-03 | |
dc.identifier.citation | Almuneef, M., Dillon, J., Abbas, M.F., Memish, Z. (2003) Varicella zoster virus immunity in multinational health care workers of a Saudi Arabian hospital, Am. J. Infect. Control, 31, 375-381.
Anderson, R.M., May, R.M. (1991) Infectious disease of humans: dynamics and control. Oxford: Oxford University Press. Anderson, R.M., Fraser, C., Ghani, A.C., Donnelly, C.A., Riley, S., Ferguson, N.M., Leung, G.M., Lam, T.H., Hedley, A.J. (2004) Epidemiology, transmission dynamics and control of SARS: the 2002-2003 epidemic, Philos. Trans. R. Soc. Lond. B Biol. Sci., 101, 6146-6151. Barnhart, S., Sheppard, L., Beaudet, N., Stover, B., Balmes, J. (1997) Tuberculosis in health care settings and the estimated benefits of engineering controls and respiratory protection, J. Occup. Envieon. Med., 39, 849–885. Bartlett, K.H., Kennedy, S.M., Brauer, M., van Netten, C., Dill, B. (2004) Evaluation and determinants of airborne bacterial concentration in the school classrooms, J. Occup. Environ. Hyg., 1: 639-647. Bauch, C.T., Lloyd-Smith, J.O., Coffee, M.P., Galvano, A.P. (2005) Dynamically modeling SARS and other newly emerging respiratory illnesses past, present, and future, Epidemiology, 6, 791-801. Beggs, C.B. (2003) The airborne transmission of infection in hospital buildings: Fact or fiction? Indoor Built. Environ., 12, 9-18. Brockmann, D., Hufnagel, L., Geisel, T. (2006) The scaling laws of human travel, Nature, 439, 462-465. Brookmeyer, R., Johnson, E., Barry, S. (2005) Modeling the incubation period of anthrax, Stat. Med.,24, 531-542. Brookmeyer, R., Johnson, E., Bollinger, R. (2003) Modeling the optimum duration of antibiotic prophylaxis in an anthrax outbreak, Proc. Natl. Acad. Sci. USA, 100, 10129-10132. Brookmeyer, R., Johnson, E., Bollinger, R. (2004) Public health vaccination policies for containing an anthrax outbreak, Nature, 432, 901-904. Cauchemez, S., Csrrat, F., Viboud, C., Valleron, A.J., Boëlle, P.Y. (2004) A batesian MCMC approach to study transmission of influenzaL application to household longitudinal data, Stat. Med., 23, 3469-3487. Center for Disease Control, R.O.C. (Taiwan) Introduction of disease (http://www.cdc.gov.tw/index_info_info.asp?data_id=786) Center for Disease Control, R.O.C. (Taiwan) Statistics & Analysis (http://www.cdc.gov.tw/en/index.asp) Chiang, C.L. (1991) Competing risks in mortality analysis, Annu. Rev. Publ. Health., 12, 281-307. Chiu, H.H., Lee, C.Y., Chih, T.W., Lee, P.I., Chang, L.Y., Lin, Y.J., Hus, C.M., Huang, L.M. (1997) Seroepidemiological study of measles after the 1992 nationwide MMR revaccination program in Taiwan, J. Med. Virol., 51, 32-35. Chow, T.T., Yang, X.Y. (2004) Ventilation performance in operating theatres against airborne infection: review of research activities and practical guidance, J. Hosp. Hnfect., 56, 85-92. Chowell, G., Castillo-Chavez, C., Fenimore, P.W., Kribs-Zaleta, C.M., Arriola, L., Hyman, M. (2004) Model parameters and outbreak control for SARS, Emerg. Infect. Dis., 10, 1258-1263. Couch, R.B. (1999) Measures for control of influenza, Pharmacoeconomics, 16, 41-45 Suppl. Deguen, S., Flahault, A. (2000) Impact on immunization of seasonal cycle of chickenpox, Eur. J. Epidemiol., 16, 1177-1181. De Serres, G., Boulianne, N., Ratnam, S., Corriveau, A. (1996) Effectiveness of vaccination at 6 to 11 months of age during an outbreak of measles, Pediatrics, 97, 232-235. Donald, A., Goldmann, M.D. (2000) Transmission of viral respiratory infections in the home. Pediatr. Infect. Dis. J., 19, S97-102. Dushoff, J., Plotkin, J.B., Levin, S.A., Earn, D.J.D. (2004) Dynamical resonance can account for seasonality of influenza epidemics, Proc. Natl. Acad. Sci. USA, 101, 16915-16916. Earn, D.J.D., Dushoff, J., Levin, S.A. (2002) Ecology and evolution of the flu, Trends Ecol. & Evol., 17, 334-340. Edmunds, W.J., Gay, N.J., Kretzschmar, M., Pebody, R.G. (2000) The pre-vaccination epidemiology of measles, mumps and rublla in Europe: implications for modeling studies, Epideiol. Infect., 125, 635-650. Elliman, D., Sengupta, N. (2005) Measles, Curr. Opin. Ifect. Dis., 18, 229-234. Eubank, S., Guclu, H., A, Kumar, V.S., Marathe, M.V., Srinivasan, A., Toroczkai, Z. Wang, N. (2004) Modeling disease outbreaks in realistic urban social networks, Nature, 429, 180–184. Falsey, A.R., Criddle, M.M., Kolassa, J.E., McCann, R.M., Brower, C.A., Hall, W.J. (1999) Evaluation of a handwashing intervention to reduce respiratory illness rates in senior day-care centers, Infect. Cont. Hosp. Ep., 20, 200-202. Fauci, A.S., Touchette, N.A., Folkers, G.K. (2005) Emerging infectious diseases: a 10-year perspective from the National Institute of Allergy and Infectious Diseases, Emerg. Infect. Dis., 11, 519-525. Fennelly, K.P., Davidow, A.L., Miller, S.L., Connell, N., Ellner, J.J. (2004) Airborne infection with Bacillus anthracis - from mills to mail, Emerg. Infect. Dis., 10, 996-1001. Ferguson, N.M., Mallett, S., Jackson, H., Roberts, N., Ward, P. (2003) A population-dynamic model for evaluating the potential spread of drug-resistant influenza virus infections during community based use of antivirals, J. Antimicrob. Chemother., 51, 977–990. Fraser, C., Riley, S., Anderson, R.M., Ferguson, N.M. (2004) Factors that make an infectious disease outbreak controllable, Proc. Natl. Acad. Sci. USA, 101, 6146-6151. Gammaitoni, L., Nucci, M.C. (1997) Using a mathematical model to evaluate the efficacy of TB control measures, Emerg. Infect. Dis., 3, 355-342. Germann, T.C., Kadau, K., Longini, I.M., Macken, C.A. (2006) Mitigation strategies for pandemic influenza in united states, Proc. Natl. Acad. Sci. USA, 103, 5935-5940. Huang, C.L., Yang, Y.H., Wang, L.C., Lin, Y.T., Tsai, Y.Y., Chiang, B.L. (2005) Humoral and cellular immune response after measles vaccination in Taiwan, J. Microbiol. Immunol. Infect., 38, 169-175. ICRP (1994) Human respiratory tract model for radiological protection, a report of task group of the International Commission on Radiological Protection. ICRP Publication, vol. 66. New York: Elsevier. Kimel, L.S. (1996) Handwashing education can decrease illness absenteeism, J. School Nurs., 12, 14-18. Kiss, I.Z., Green, D.M., Kao, R.R. (2006) Infectious disease control using contact tracing in random and scale-free networks, J. R. Soc. Interface, 3, 55-62. Ko, G., Thompson, K.M., Nardell, E.A. (2004) Estimation of tuberculosis risk on a commercial airliner, Risk Analysis, 24, 379–388. Kokaze, A., Yoshida, M., Sekine, Y., Ishikawa, M., Kurokochi, T., Uchida, Y., Matsunaga, N., Takashima, Y. (2001) The magnitude of variation in temperature within a year has an effect on seasonal variations of chickenpox incidence in Japan, Epidemiol. Infect., 126, 269-277. Kujundzic, E., Zander, D.A., Hernandez, M. (2005) Effects of ceniling-mounted HEPA-UV air filters on airborne bacteria concentrations in an indoor therapy pool building, J. Air & Waste Manage. Assoc., 55, 210-218. Lapeña, S., Robles, M.B., Castañón, L., Martínes, J.P., Reguero, S., Alonso, M.P., Fernándes, I. (2005) Climatic factors and lower respiratory tract infection due to respiratory syncytial virus in hospitalized infants in northern Spain, Eur. J. Epidemiol., 30, 271-276. Lee, M.S., Chien, L.J., Yueh, Y.Y., Lu, C.F. (2001) Measles seroepidemiology and decay rate of vaccine-induced measles IgG titers in Taiwan, 1995-1997. Vaccine, 19, 4644-4651. Lee, M.S., King, C.C., Chen, C.J., Yang, S.Y., Ho, M.S. (1995) Epidemiology of measles in Taiwan: dynamics of transmission and timeliness of reporting during an epidemic in 1988-9, Epidemiol. Infec., 114, 345-359. Lee, M.S., King, C.C., Jean, J.Y., Kao, C.L., Wang, C.C., Ho, M.S., Cheng, C.J., Lee, C.Y. (1992) Seroepidemiology and evaluation of passive surveillance during 1988-1989 measles outbreak in Taiwan, Int. J. Epidemiol., 21, 1165-1174. Lee, M.S., Nokes, D.J., Hsu, H.M., Lu, C.F. (2000) Protective titres of measles neutralizing antibody, J. Med. Virol., 62, 511-517. Lee, M.S., Nokes, D.J., Wu, Y.C, Huang, Y.H., Lu, C.F. (2002) Measles IgG seroprevalence prior to mass vaccination in Taiwan, Int. J. Infect. Dis., 6, 42-47. Lee, T., Jordan, N.N., Sanchez, J.K., Gaydos, J.C. (2005) Selected nonvaccine interventions to prevent infectious acute respiratory disease, Am. J. Prev. Med., 28, 305-316. Li, Y., Duan, S., Yu, I.T.S., Wong, T.W. (2005)a Multi-zone modeling of probable SARS virus transmission by airflow between flats in Block E, Amoy Gardens, Indoor Air, 15, 96-111. Li, Y., Huang, X., Yu, I.T.S., Wong, T.W., Qian, H. (2005)b Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong, Indoor Air, 15, 83-95. Lipsitch, M., Cohen, T., Cooper, B., Robins, J.M., Ma, S., Janmes, L., Gopalakrishna, G., Chew, S.K., Ten, C.C., Samore, M.H., Fisman, D., Megan, M. (2003) Transmission dynamics and control of severe acute respiratory syndrome, Science, 300, 1966-1970. Liu, C.C., Lei, H.Y., Chiang, Y.P. (1996) Seroepidemicology of measles southern Taiwan: two years after implementation of the measles elimination program, J. Foros. Med. Assoc., 95, 37-40. Lloyd, A.L. (2004) Estimating variability in models for recurrent epidemics: assessing the use of moment closure techniques, Theor. Popul. Biol., 65, 49-65. Longini, I.M., Nizam, A., Xu, S.F., Ungchusak, K., Hanshaoworakul, W., Cummings, D.A.T., Halloran, M.E. (2005) Containing pandemic influenza at the source, Science, 309, 1083-1087. Manfredi, P., Williams, J.R., Ciofidegliatti, M.L., Salmaso, S. (2005) Measles elimination in Italy: projected impact of the nation elimination plan, Epidemiol. Infect., 133, 87-97. Mangili, A., Gendreau, A. (2005) Transmission of infectious diseases during commercial air travel, Lancet, 365, 989-996. Masuda, N., Konno, N., Ailara, K. (2004) Transmission of severe acute respiratory syndrome in dynamical small-world networks, Phys. Rev., 69, 1-6. Mclean, A.R., Anderson, R.M. (1988) Measles in developing countries Part I. Epidemiological parameters and patterns, Epidemiol. Infect., 100, 111-133. Menzies, D., Julia, P., Hanley, J.A., Rand, T., Milton, D.K. (2003) Effect of ultraviolet germicidal lights installed in office ventilation system on works’ health and wellbeing: double-blind multiple, Lancet, 362, 1785-1791. Meyers, L.A., Pourbohloul, B., Newman, M.E.J., Skowronski, D.M., Brunham, R.C. (2005) Network theory and SARS: predicting outbreak diversity, J. Theor. Biol., 232, 71-81. Mills, C.E., Robins, J.M., Lipsitch, M. (2004) Transmissibility of 1918 pandemic influenza, Nature, 432, 904-906. Milton, D.K., Glencross, P.M., Walters, M. (2000) Risk of sick leave associated with outdoor air supply rate, humidification, and occupant complaints, Indoor Air, 10, 212-221. Montes, M., Vicente, D., Perez-Yarza, E.G., Cilla, G., Perez-Trallero, E. (2005) Influenza-related hospitalisations among children aged less than 5 years old in the Basque Country, Spain: a 3-year study (July 2001-June 2004), Vaccine, 23, 4302-4306. Müller, J., Kretzschmar, M., Dietz, K. (2000) Contact tracing in stochastic and deterministic epidemic models, Math. Biosci., 164, 39-64. Morens, D.M., Folkers, G.K., Fauci, A.S. (2004) The challenge of emerging and re-emerging infectious diseases, Nature, 430, 242-249. Murray, J.D. (1989) Mathematical Biology, Springer-Verlag Press. Myatt, T.A., Johnston, S.L., Zuo, Z.F., Wand, M., Kebadze, T., Rudnick, S., Milton, D.K. (2004) Detection of airborne rhinovirus and its relation to outdoor air supply in office environments, Am. J. Resp. Crit. Care., 169, 1187-1190. Nardell, E.A., Keegan, J, Cheney, S.A., Etkind, S.C. (1991) Airborne infection: Theoretical limits of protection achievable by building ventilation, Am. Rev. Respir. Dis., 144, 302-306. Nazaroff, W.W., Nicas, M., Miller, S.L. (1998) Framework for evaluating measures to control nosocomial tuberculosis transmission, Indoor Air, 8, 205-218. Nelson, K.E., Williams, C.M., Graham, N.M.H. (2001) Infectious Disease Epidemiology. An Aspen Press. Nicas, M., Nazaroff, W.W., Hubbard, A. (2005) Toward understanding the risk of secondary airborne infection emission of respiratory pathogens, J. Occup. Environ. Hyg., 2, 143-154. Nicolosi, A., Sturkenboom, M., Mannino, S., Arpinelli, F., Cantarutti, L., Giaquinto, C. (2003) The incidence of varicella: Correction of a common error, Epidemiology, 14, 99-102. Niffenegger, J.P. (1997) Proper handwashing promotes wellness in child care, J. Pediater. Health, 11, 26-31. Olsen, S.J., Chang, H., Cheung, T.Y., Tang, A.F., Fisk, T.L., Ooi, S.P., Kuo, H., Jiang, D.D., Chen, K., Lando, J., Hsu, K., Chen, T., Dowell, S.F. (2005) Transmission of the severe acute respiratory syndrome on aircraft, New Engl. J. Med., 349, 2416-2422. Rebmann, T. (2005) Management of patients infected with airborne-spread diseases: An algorithm for infection control professionals, Am. J. Infect. Control, 33, 571-579. Riley, E.C., Murphy, G., Riley, R.L. (1978) Airborne spread of measles in a suburban elementary school, Am. J. Epidemol., 107, 421-432. Riley, R.L. (1982) Indoor airborne infection, Environ. Int., 8, 317-320. Riley, R.L., O'Grady, F. (1961) Airborne Infection, NY, Mac-Millan Co. Press. Rudnick, S.N. (2004) Optimizing the design of room air filters for the removal of submicrometer particles, Aerosol Sci. Tech., 38: 861-869. Rudnick, S.N., Milton, D.K. (2003) Risk of indoor airborne infection transmission estimated from carbon dioxide concentration, Indoor Air, 13, 237-245. Ryan, M.A.K., Christian, R.S., Wohlrabe, B.J. (2001) Handwashing and respiratory illness among young adults in military training, Am. J. Prev. Med., 21, 79-83. Tan, H.F., Tseng, H.F., Chang, C.K., Ko, D., Lee-Hsieh, J. (2004) The incidence of varicella in southern Taiwan: a life table method estimation among susceptible population, Vaccine, 22, 2730-2736. Thomas, J.C., Weber, D.J. (2001) Epidemiologic Methods for the Study of Infectious Diseases, Oxford University Press. Tsang, K.W.T., Eng, P., Liam, C.K., Shim, Y.S., Lam, W.K. (2005) H5N1 influenza pandemic: contingency plans, Lancet, 366, 533-534. Tseng, C.C., Li, C.S. (2005) Inactivation of virus-containing aerosols by ultraviolet germicidal irradiation, Aerosol Sci. Tech., 39, 1136-1142. Tseng, H.F., Tan, H.F., Chang, C.K. (2003) Varicella vaccine safety, incidence of breakthrough, and factors associated with breakthrough in Taiwan, Am. J. Infect. Control, 31, 151-156. Vazquez, M., LaRussa, P.S., Gershon, A.A., Niccolai, L.M., Muehlenbein, C.E., Steinberg, S.P., Shapiro, E.D. (2005) Effectiveness over time of varicella vaccine, J. Am. Med. Assoc., 291, 851-855. Wallinga, J., Teunis, P. (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures, Am. J. Epidemiol., 160, 509-516. Wang, W., Ruan, S. (2004) Simulating te SARS outbreak in Beijing with limited data, J. Theor. Biol., 58, 186-191. Wang, Y.C. (2003) Mathematical Model for Estimating Reproductive Number (R0) of Infectious disease: Two Illustrations Using Endemic Hepatitis B Infection and Epidemic Spread of Severe acute respiratory syndrome (SARS). Nation Taiwan University. Well, W.F. (1955) Airborne Contagion and Air Hygiene: an Ecological Study of Droplet Infection, Cambridge, MA, Harvard University Press. Wells, W.F. (1934) On air-borne infection. Study II. Droplets and droplet nuclei, Am. J. Hygiene, 20, 611-618. Wells, W.F., Fair, G.M. (1935) Viability of B. coli exposed to ultra-violet radiation in air, Science, 82, 280-281. Wenzel, R., Bearman, G., Edmond, M.B. (2005) Lessons from severe acute respiratory syndrome (SARS): implications for infection control, Arch. Med. Res. 36, 610-616. Whitaker, H.J., Farrington, C.P. (2004) Infections with varying contact rates: application to varicella, Biometrics, 60, 615-623. Wikening, D.A. (2006) Sverdlovsk revisited: modeling human inhalation anthrax, 20, Proc. Natl. Acad. Sci. USA, 7589-7594. Wong, T.W., Li, C.K., Tam, W., Lau, J.T.F., Yu, T.S., Lui, S.F., Chan, P.K.S., Li, Y.G., Bresee, J.S., Sung, J.Y., Parashar, U.D. (2004) Cluster of SARS among medical students exposed to single patient, Hong Kong, Emerg. Infect. Dis., 10, 269-276. World Health Organization (2003) Influenza overview (http://www.who.int/topics/influenza/en). World Health Organization (2004) The world health report 2004 - changing history (http://www.who.int/whr/2004/en) Xu, P., Kujundzic, E., Peccia, J., Schafer, M. P., Moss, G., Hernandez, M., Miller, S.,L. (2005) Impact of environmental factors on efficacy of upper-room air ultraviolet germicidal irradiation for inactivating airborne mycobacteria, Environ. Sci. Technol., 39; 9656-9664. Yu, A.L.F., Amaku, M., Burattini, M.N., Massad, E., Azevedo, R.S. (2001) Varicella transmission in two samples of children with different social behaviour in the State of Sao Paulo, Brazil, Epidemiol. Infect., 127, 493-500. Yu, I.T.S., Li, Y., Wong, T.W., Tam, W., Chan, A.T., Lee, J.H., Leung, D.Y., Ho, T. (2004) Evidence of airborne transmission of the severe acute respiratory syndrome virus, N. Engl. J. Med., 22, 1731-9. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34092 | - |
dc.description.abstract | 本研究之目的在於發展一室內呼吸性疾病之控制策略模式,進而加以量化公共衛生之風險。此控制策略模式主要以函數之相關性整合四種流行病學之方程式,分別為修正之Wells-Riley數學模式、競爭-風險(competing-risks)模式、Von Foerster方程式以及典型的受體-感染-復原(Susceptible-Infectious-Recovered, SIR)模式。本研究中所利用之控制策略則是結合工程控制方法包含增加通風量、增加通風設備之過濾系統、紫外線殺菌(UVGI)系統和個人用之口罩以及政策控制干預包括隔離、疫苗、接觸追蹤以及洗手,用以建構一方便使用以及簡易說明之臨界控制線。並應用上述之數學方法針對流行性感冒、水痘、麻疹以及嚴重急性呼吸性症候群(SARS)四種先前曾爆發過之呼吸性疾病,提供最佳之控制策略。本研究估計SARS在醫院中之傳輸,其平均一個病人在一個室內之空間當中可以傳染2.7個新病例,針對流行性感冒、水痘和麻疹而言,則是計算這三種呼吸性疾病位於商用飛機上之擴散,在一次旅途中所產生基本再生數(R0)之估計值分別為11.7、15.1和6.0。接著本研究利用增加工程控制方法以降低傳染性疾病之R0值,計算結果成功降低四種疾病之R0值,流行性感冒降低為2.0、水痘降低為0.6、麻疹降低為4.4則SARS可降為0.3;其後本研究模擬政策干預之加入,模擬顯示政策干預可明顯地降低四種室內呼吸性傳染疾病之爆發風險。最後,由本研究之結果指出結合工程控制方法及政策干預可以有效地控制流行性感冒和水痘的爆發;另一方面針對SARS而言,只要使用高效率隔離已產生症狀之病人,加上使用低效率之接觸追蹤即可有效地控制疾病之爆發。本研究建議有系統地量化傳染性疾病之傳輸性及考慮無症狀但具有傳染性期間之比例可有效為評估室內呼吸性傳染疾病控制方法之選擇。 | zh_TW |
dc.description.abstract | The purpose of this study is to quantify the public health risk and to develop control measure modeling approaches concerning in containing indoor respiratory infections. Here we integrate four different types functional relationship of modified Wells-Riley mathematical model, competing-risks model, Von Foerster equation, and standard susceptible-infectious-recovered (SIR) model to construct easy-to-use and easy-to-interpret critical control lines. We examine mathematically the impact of engineering control measures such as enhanced air exchange, ventilation filter, ultraviolet germicidal irradiation (UVGI) system and personal mask combined with administrative interventions such as vaccine, isolation, contact tracing and handwashing in containing the spread of indoor respiratory infections. We demonstrate the approach with example of optimal control measures to priority respiratory infections of severe acute respiratory syndrome (SARS), influenza, measles and chickenpox. We estimate that a single case of SARS will infect 2.7 secondary cases on average in a population from nosocomial transmission. We also obtain an estimate of the basic reproduction number (R0) for influenza, measles, and chickenpox in a commercial airliner: the median value is 11.7, 15.1, and 6.0 respectively. If enhanced engineering controls could reduce the R0 below 2.0 for influenza, 4.4 for measles, 0.6 for chickenpox and 0.3 for SARS, our simulations show that in such a prepared response with administrative interventions would have a high probability of containing the indoor respiratory infections. Our analysis indicates that combinations of engineering control measures and administrative interventions could effective contain influenza and chickenpox; on the other hand effective isolation of symptomatic patients with low-efficacy contact tracing is sufficient to control a SARS outbreak. We suggest that a valuable added dimension to public health interventions could be provided by systematically quantifying transmissibility and proportion of asymptomatic infection of indoor respiratory infection. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T05:54:02Z (GMT). No. of bitstreams: 1 ntu-95-R93622039-1.pdf: 2907290 bytes, checksum: ae0b779d30761d52a28b0cd97802d214 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | ABSTRACT I
ABSTRACT (CHINESE) III Table of Contents V LIST OF TABLES VII LIST OF FIGURES VIII NOMENCLATURE X Chapter 1 INTRODUCTION - 1 - CHAPTER 2 BACKGROUND AND RESEARCH OBJECTIVES - 3 - 2.1 Background - 5 - 2.2 Research Objectives - 5 - Chapter 3 LITERATURE REVIEW - 6 - 3.1 Indoor Respiratory Infections - 6 - 3.1.1 Influenza - 8 - 3.1.2 Severe acute respiratory syndrome (SARS) - 8 - 3.1.3 Chickenpox - 10 - 3.1.4 Measles - 10 - 3.2 Basic Reproduction Number (R0) - 12 - 3.3 Mathematical models - 13 - 3.3.1 Wells-Riley equation - 13 - 3.3.2 Competing-risks model - 14 - 3.3.3 Von Foerster equations - 16 - 3.3.4 SIR model - 18 - 3.4 Control Measures - 19 - 3.4.1 Engineering control measure - 19 - 3.4.2 Administrative interventions - 22 - CHAPTER 4 MATERIALS AND METHODS - 24 - 4.1 Quantitative Epidemiology of Data - 24 - 4.2 Model Development - 27 - 4.2.1 Wells-Riley mathematical equation - 27 - 4.2.2 Competing-risks model - 30 - 4.2.3 Von Foerster equation-based model - 34 - 4.2.4 SIR transmission model - 36 - 4.3 Risk Analysis - 39 - 4.3.1 Risks of infectious disease outbreak - 39 - 4.3.2 Criteria for Outbreak Control - 40 - CHAPTER 5 RESULTS - 41 - 5.1 Quantitative Epidemiology of Data - 41 - 5.1.1 Epidemic curves and quantum generation rates - 41 - 5.2 Key Epidemiology Parameter Estimates - 45 - 5.2.1 Parameter estimates for basic reproduction number (R0) - 45 - 5.2.2 Parameter estimates for proportion of asymptomatic infection (θ) - 48 - 5.3 Impact of Control Measure - 51 - 5.3.1 Impact of engineering control measure for reducing R0 - 51 - 5.3.2 Impact of administrative intervention for R0curve - 51 - 5.3.3 Relationship between control measure and transmission rate - 56 - 5.4 Risk Analysis - 60 - 5.4.1 Risks of infectious disease outbreak - 60 - 5.4.2 Combinations of control measures for outbreak control - 62 - CHAPTER 6 DISCUSSION - 67 - 6.1 Characterization of Epidemiological Data - 67 - 6.1.1 Epidemic growth - 67 - 6.1.2 Seasonal variation for infection - 67 - 6.2 Model Validation - 71 - 6.2.1 Compared with published transmission dynamic model - 71 - 6.2.2 Apply published data to verify our model - 71 - 6.3 The Most Suitable Control Strategy - 75 - 6.4 Implications of Our Proposed Model - 78 - CHAPTER 7 CONCLUSIONS - 80 - CHAPTER 8 SUGGESTIONS FOR FUTURE RESEARCH - 83 - Bibliography - 85 - | |
dc.language.iso | en | |
dc.title | 室內呼吸性疾病傳輸動態及控制策略模擬 | zh_TW |
dc.title | Transmission Dynamics of Indoor Respiratory Infection and Control Measure Modeling | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉振宇,喻新,葉錦瑩 | |
dc.subject.keyword | 室內呼吸性傳染疾病,基本有效再生數(R0),數學模式,室內空氣品質,控制策略,風險, | zh_TW |
dc.subject.keyword | Indoor respiratory infection,Basic reproduction number,Mathematical models,Indoor air quality,Control measure,Risk, | en |
dc.relation.page | 95 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-03 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
顯示於系所單位: | 生物環境系統工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 2.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。