請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34079
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊照彥 | |
dc.contributor.author | Yu-Shan Su | en |
dc.contributor.author | 蘇郁山 | zh_TW |
dc.date.accessioned | 2021-06-13T05:53:37Z | - |
dc.date.available | 2006-07-13 | |
dc.date.copyright | 2006-07-13 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-03 | |
dc.identifier.citation | [1] E. R. Brown and C. D. Parker, 'Radiation Properties of a Planar Antenna on a Photonic-Crystal Substrate,' J Opt Soc Am B, Vol. 10, 1993.
[2] S. K. Sharma and L. Shafai, “Enhanced Performance of an Aperture-Coupled Rectangular Microstrip Antenna on a Simplified Unipolar Compact Photonic Band Gap (UC-PBG) Structure”, Antennas and Propagation Society, IEEE International Sym., Vol. 2 , pp. 498 –501, 2001. [3] T. K. Gaylord and M.G. Moharam, “Analysis and Applications of Optional diffraction by Gratings”, IEEE Proc, Vol.73, pp.884-937, 1985 [4] D. Maystre, “Electromagnetic Study of Photonic Band Gaps”, Pure Appl. Opt.,Vol. 3, No.6, pp.975-993, 1994 [5] D. M. Pozar, “Microstrip Antennas,” Proc. IEEE, Vol.80, No. 1, pp. 79-81, 1992 [6] K. C. Gupta, et al., Microstrip Lines and Slot Lines, 2nd ed., Artech House, Norwood, MA, 1996. [7] R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Boston Arteck House, 2001. [8] S. L. Chuang, “The Equivalance of the Electric and Magnetic Surface Current Approaches in Microstrip Antenna Studies”, IEEE Trans. on Antennas and Propagation, Vol. AP-28, pp.569-571, 1980 [9] P Perlmutter, S. Shritkman, and D. Treves, “Electric Surface Current Model for the Analysis of Microstrip Antennas With Application to Rectagular Elements,” IEEE Trans. on Antennas and Propagation, Vol. AP-33 pp.301-311, 1985. [10] E R. Brown, O B. McMahon, and C. D. Parker, “Photonic-Crystal Antenna Substrates”, Lincoln Laboratory Journal, Vol. 11 Nov. 2, 1998 [11] R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook. Norwood, MA: Artech House, 1995. [12] D. M. Pozar, “Microstrip Antennas,” Proc. IEEE, Vol.80, No. 1, pp. 79-81, 1992 [13] Stutzman and Thiele, Antenna Theory and Design, 2nd ed: John Wiley & Sons, Inc., 1998. [14] C.A. Balanis, Antenna Theory Analysis and Design, 2nd ed: John Wiley & Sons, Inc., 1997. [15] W.L. Stutzman and G.A. Thiele, Antenna Theory and Design, 2nd ed: John Wiley & Sons, Inc., 1998. [16] Keith C. Huie, Microstrip Antennas: Broadband Radiation Patterns Using Photonic Crystal Substrates, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2002 [17] F. E. Gardiol, Broadband Patch Antennas, Artech House, 1998 [18] David R. Jackson Jeffery T. Williams Donald R. Wilton, “Chapter 9: Antennas II,” Applied Electromagnetics Laboratory Department of Electrical and Computer Engineering University of Houston, 2002 [19] C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, New York, 1989 [20] J. D. Joannopoulous, P.R. Villeneuve, and S. Fan, “Photonic Crystal,” Nature 368, pp.143, 1997 [21] H. Heinzelmann, B. Hecht, L.Novotny, 'Forbidden light scanning near-field optical microscopy', J. Micr. pp. 115-177, 1994 [22] L. Novotny, P. Regli, 'Light Propagation through Nanometer-Sized Structures: The Two-Dimensional-Aperture Scanning Near-Field Optical Microscope', J. Opt. Soc. 11, pp. 1768, 1994 [23] B. Hecht, H. Heinzelmann, 'Combined aperture SNOM/PSTM: best of both worlds?' Ultramicr, pp. 57-228, 1995 [24] B. Hecht, L. Novotny, 'Tunnel' near-field optical microscopy: TNOM-2', in 'Photons and Local Probes', NATO ASI Series E: Applied Sciences, Vol. 300 eds. O. Marti and R.Moeller, Kluwer, pp.93, 1995 [25] L. Novotny, B. Hecht, 'Light Propagation in Scanning Near-Field Optical Microscopy', in 'Photons and Local Probes', NATO ASI Series E: Applied Sciences, Vol. 300 eds. O. Marti and R. Moeller, Kluwer, pp21, 1995 [26] B. Hecht, H. Heinzelmann, ''Tunnel' Near-Field Optical Microscopy: TNOM-2,' Ultramicr, pp.180, 1995 [27] L. Novotny, B. Hecht, 'Near-field, far-field and imaging properties of the 2-d aperture SNOM', Ultramicr. 57, pp.180, 1995 [28] Van Labeke, 'A theoretical model for the Inverse Scanning Tunneling Optical Microscope (ISTOM),' Opt. Comm. 114, pp.470 1995 [29] M.Barchiesi, H.Thomas, 'The inverse scanning tunneling near-field microscope (ISTOM) or tunneling scanning near-field optical microscope (TSNOM) 3D simulations and applications to nano-sources,' Ultramicr. 61, pp.17 1995 [30] B. Hecht, H. Heinzelmann, 'Facts and Artifacts in Near-Field Optical Microscopy', J. Appl. Phys. 81, pp.2492, 1997 [31] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light, New York: Princeton University Press, 1995 [32] S. G. Johnson and J. D. Joannopoulos, Introduction to Photonic Crystals:Bloch’s Theorem, Band Diagrams, and Gaps (But No Defects), MIT 3rd February 2003 [33] K. Sakoda, Optical Properties of Photonic Crystals, Sp3ringer Verlag, 2001 [34] I. J. Bahl, and P. Bhartia, Microstrip Antennas, Artech House, 1980. [35] J. R. James, P. S. Hall, and C.Wood, Microstrip Antenna. Theory and Design, Peter Peregrinus Ltd., 1981. [36] J. R. James, and P. S. Hall, Handbook of Microstrip Antennas, IEE Peter Peregrinus Ltd., 1989. [37] C. A. Balanis, Antenna Theory Analysis and Design, Second edition, John Wiley & Sons, Inc., 1997. [38] D. M. Pozar, “Considerations for millimeter wave printed antennas,” IEEE Trans. Antennas Propagat., vol. AP-33, pp. 740–747, Sept. 1983. [39] Roberto Coccioli ,Kuang-Ping Ma, Tatsuo Itoh, “Aperture-Coupled Patch Antenna on UC-PBG Substrate”, IEEE ,VOL. 47, NO. 11, NOVEMBER 1999 [40] D. M. Pozar and S. D. Targonski, “Improved coupling for aperture coupled microstrip antennas,” Electron. Lett., vol. 27, no. 13, pp. 1129–1131, July 1991. [41] R.Gonzalo and G. Nagore, “Simulated and measured performance of a patch antenna on a 2-dimensional photonic crystals substrate”, Progress In Electromagnetics Research, PIER 37, 257–269, 2002 [42] J. R. James, and A. Henderson, “High-frequency behavior of microstrip open-circuit terminations,” IEE J. Microwaves, Optics and Acoustics, Vol. 3, 205–218, 1979 [43] E. R. Brown and C. D. Parker, “Radiation properties of a planar antenna on a photonic-crystal substrate” J. Opt. Soc. Am. B/Vol.10, No. 2/February 1993 [44] Y. J. Sung and Y.-S. Kim, “An improved design of microstrip patch antennas using photonic bandgap structure,” IEEE Transactions on antenna and propagation vol. 53, no. 5, May. 2005 [45] R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, “Nature of photonic band gap: some insights from a field analysis,” J. Opt. Soc. Am. B, Vol. 10, No. 2, Feb. 1993. [46] T.Baba, and T. Matsuzaky, “Theoretical calculation of photonic gap in semiconductor 2-dimensional photonic crystals with various shapes of optical atoms,” J. Appl. Phys., Vol. 34, 4496–4498, Aug. 1995. [47] D. Casagne, C. Jouanin, and D. Bertho, “Hexagonal photonicband- gap structures,” Physical Review B, Vol. 53, No. 11, 7134– 7142, Mar. 1996. [48] S. G. Johnson, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Physical Review B, Vol. 60, No. 85751–5758,Aug.1999. [49] Steven G. Johnson, John D. Joannopoulos, Photonic crystals the roak from theory to practice, Copyright by M.I.T.,2003 [50] 欒丕綱 陳啟昌, “光子晶體,”五南出版公司 ,2005 [51] H. S. Sozuer and J.P. Dowling, ' Photonic band calculations for woodpile structures,' J. Mod. Opt.,' vol. 41, no. 2, pp 231-239, 1994. [52] Andrew R. Weily, A planar resonator antenna based on a woodpile EBG material,” IEEE, Transactions on antenna and propagation vol. 53, no. 1, January 2005 [53] K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun., vol. 89, pp. 413–416, 1994. [54] Charles Kittel, Introduction to Solid State Physics,Wiley, 2002 [55] Ansoft Corporation HSFF v.92, User Manuel, 225 West Station Square Dr, Suite 200 Pittsburgh, PA 15219-1119 USA [56] RSoft Design Group, Inc., BandSOLVE 1.0 User Manuel Ossining, NY 10562.USA | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34079 | - |
dc.description.abstract | 微帶平面天線的好處在於能以低姿態卻又實用的平面結構得到高範圍的輻射場型,但是由於在天線結構上有表面波的損失,使得在平面天線上的設計有許多缺點,像是頻寬的受限、低增益,以及低輻射效率。
爲了改善平面天線,降低表面波,光子晶體在最近幾年被提議應用在平面天線的介質中。加上光子晶體的平面天線會比未加上光子晶體的天線更有效的降低表面波,並因此可進一步增加輻射場型以及增益。本論文主要是應用三維光子晶體厚板以及層堆結構在平面天線上,並爲了設計理想的光子晶體,利用套裝軟體模擬能帶,在一定的平面天線工作頻率下,配合完全能帶將三維光子晶體的尺寸大小最佳化,以結合平面天線。 另外,藉由套裝軟體的模擬呈現在加了光子晶體的天線之表面波,與未結合光子晶體的天線做比較,因此,可得到最好的輻射場型與效率。 | zh_TW |
dc.description.abstract | Mcrostrip patch antenna is a low-profile robust planar structure which can achieve a wide range of radiation patterns. However, patch-antenna designs have some limitations such as restricted bandwidth of operation, low gain, and a potential decrease in radiation efficiency, as a result of surface-wave losses.
In order to minimize the surface-wave effects, a photonic-band gap (PBG) substrate is proposed in recently years. The PBG structure antenna shows significantly reduced levels of the surface wave modes compared to conventional patch antennas, and thus improves the gain and far-field radiation pattern and efficiency. In order to meet these requirements, photonic crystal slabs and woodpile structure in this thesis are applied and integrated with antenna. Simultaneously, the simulations of 3D photonic crystals band gap are also represented, in order to find out the corresponding optimal parameters of slabs and woodpile structure with respect to patch antenna. Another point is that the suppression of surface wave in microstrip antennas. In addition, simulation of reducing surface wave propagation in a rectangular microstrip patch antenna with and without PBG is presented. Therefore, the proposed analytical models are suitable for active integrated antennas and applied to improve performance of a broadband circularly polarized patch antenna. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T05:53:37Z (GMT). No. of bitstreams: 1 ntu-95-R93543069-1.pdf: 2821387 bytes, checksum: 3ca36d436c39d158c2a6358005a77c9d (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | Chapter 1Thesis Overview..................................1
1-1 Introduction..........................................1 1-2 Thesis Motivation.....................................2 1-3 Thesis Outline.....................................3 References................................................6 Chapter 2 Theory Analysis of Microstrip Antennas..........7 2-1 Introduction..........................................7 2-2 Basic Characteristics.................................8 2-3 Feeding Techniques...................................10 2-4 Method of Analysis...................................11 2-4-1Transmission Line Model.............................11 2-4-2Design Rules........................................11 2-4-3 Cavity Model for Microstrip Antennas..............13 2-4-3-1 Field Configurations (models)-TM ................14 2-4-3-2 Radiation Patterns...................18 References...............................................30 Chapter 3 Bandgap Substrate..............................31 3-1General Reviews of Photonic Crystals..................31 3-2 Photonic-crystal Slabs...............................32 3-3 Three-Dimensional Photonic Crystals..................34 3-4The Plane Wave Expansion Method.......................35 3-4-1 Primitive Lattice Vectors................36 3-4-2 Propagation Constant...............................36 3-4-3 Calculation of Band Structures.....................37 References...............................................43 Chapter 4 Analytical Design Software.....................45 4-1 Antenna Design Software..............................45 4-2 Bandgap Analysis Software............................45 References...............................................47 Chapter 5 Analysis and Simulation of Antenna.............48 5-1 Introduction.........................................48 5-2 Design of the Conventional Patch Antenna.............48 5-3 Simulations of A Conventional Antenna................49 References...............................................56 Chapter 6 Simulation Results of Patch Antenna with PBG...57 6-1 A Patch Antenna on A Photonic Crystal Substrate......57 6-2 Design of The Photonic Crystal for Patch Antenna.....58 6-3 Square lattice Slabs.................................58 6-3-1 Optimize Square PBG Slabs of The Patch Antenna.....58 6-3-2 Design Results.....................................59 6-3-3 Simulation Results of A Patch Antenna with Square PBG Slab.................................................60 6-4 Triangular Lattice Slabs.............................60 6-4-1 Design Triangular PBG Slabs of A Conventional Antenna..................................................61 6-4-2 Design Results.....................................61 6-4-3 Simulation Results of A Patch Antenna with Triangular PBG...........................................62 6-5 Three-Dimensional Photonic Crystals..................62 6-5-1 Band Gap of 3-D Photonic Crystals..................63 6-5-2 Design Suitable 3-D photonic Crystal Lattice Structures of A Conventional Microstrip Patch Antenna....66 6-5-3 Simulation Results of The Patch Antenna with Woodpile.................................................67 6-6 Discussion of Simulation Results.....................68 Chapter 7 Conclusion.....................................69 References..............................................110 | |
dc.language.iso | en | |
dc.title | 三維光子晶體厚板及層堆結構於微帶平板天線之改善設計 | zh_TW |
dc.title | An Improved Design of Microstrip Patch Antennas Using 3D Photonic Crystal Slab and Woodpile | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張家歐,黃家健,許惠貞 | |
dc.subject.keyword | 平面天線,三維光子晶體,層堆,厚板, | zh_TW |
dc.subject.keyword | patch antenna,3Dphotonic crystal,woodpiles,slab, | en |
dc.relation.page | 111 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 2.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。