請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34029
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳進庭 | |
dc.contributor.author | Cheng-Yang Hsu | en |
dc.contributor.author | 許正揚 | zh_TW |
dc.date.accessioned | 2021-06-13T05:52:04Z | - |
dc.date.available | 2016-08-10 | |
dc.date.copyright | 2011-08-10 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-26 | |
dc.identifier.citation | 1. Chen, T., et al., Human cytokine responses induced by Gram-positive cell walls of normal intestinal microbiota. Clinical & Experimental Immunology, 1999. 118(2): p. 261-267.
2. Sorum, H. and M. Sunde, Resistance to antibiotics in the normal flora of animals. Vet. Res., 2001. 32(3-4): p. 227-241. 3. Emori, T.G. and R.P. Gaynes, An overview of nosocomial infections, including the role of the microbiology laboratory. Clin. Microbiol. Rev., 1993. 6(4): p. 428-442. 4. Weinstein, R.A., Nosocomial Infection Update. Emerging Infectious Diseases, 1998. 4(3): p. 416-420. 5. Lowy, F.D., Staphylococcus aureus Infections. New England Journal of Medicine, 1998. 339(8): p. 520-532. 6. Enright, M.C., et al., The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proceedings of the National Academy of Sciences, 2002. 99(11): p. 7687-7692. 7. Mulligan, M.E., et al., Methicillin-resistant Staphylococcus aureus: A consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management. The American Journal of Medicine, 1993. 94(3): p. 313-328. 8. Raad, I., A. Alrahwan, and K. Rolston, Staphylococcus epidermidis: Emerging Resistance and Need for Alternative Agents. Clinical Infectious Diseases, 1998. 26(5): p. 1182-1187. 9. Vuong, C. and M. Otto, Staphylococcus epidermidis infections. Microbes and Infection, 2002. 4(4): p. 481-489. 10. Bodey, G.P., et al., Infections Caused by Pseudomonas aeruginosa. Review of Infectious Diseases, 1983. 5(2): p. 279-313. 11. Mugabe, C., et al., Mechanism of Enhanced Activity of Liposome-Entrapped Aminoglycosides against Resistant Strains of Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2006. 50(6): p. 2016-2022. 12. Khachatourians, G.G., Agricultural use of antibiotics and the evolution and transfer of antibiotic-resistant bacteria. CMAJ, 1998. 159(9): p. 1129-1136. 13. McManus, M., Mechanisms of bacterial resistance to antimicrobial agents. American Journal of Health-System Pharmacy, 1997. 54(12): p. 1420-1433. 14. Tenover, F.C., Mechanisms of Antimicrobial Resistance in Bacteria. The American Journal of Medicine, 2006. 119(6, Supplement 1): p. S3-S10. 15. Zavascki, A.P., et al., Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. Journal of Antimicrobial Chemotherapy, 2007. 60(6): p. 1206-1215. 16. Brown, G.M., The Biosynthesis of Folic Acid. Journal of Biological Chemistry, 1962. 237(2): p. 536-540. 17. White, R., et al., Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob. Agents Chemother., 1996. 40(8): p. 1914-1918. 18. Chen, L.F., T. Chopra, and K.S. Kaye, Pathogens Resistant to Antibacterial Agents. Infectious Disease Clinics of North America, 2009. 23(4): p. 817-845. 19. Kwon, D.-H. and C.-D. Lu, Polyamine Effects on Antibiotic Susceptibility in Bacteria. Antimicrob. Agents Chemother., 2007. 51(6): p. 2070-2077. 20. Kwon, D.H. and C.-D. Lu, Polyamines Increase Antibiotic Susceptibility in Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2006. 50(5): p. 1623-1627. 21. Shai, Y., Mode of action of membrane active antimicrobial peptides. Peptide Science, 2002. 66(4): p. 236-248. 22. Ong, P.Y., et al., Endogenous Antimicrobial Peptides and Skin Infections in Atopic Dermatitis. New England Journal of Medicine, 2002. 347(15): p. 1151-1160. 23. Ganz, T., Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol, 2003. 3(9): p. 710-720. 24. Je, J.-Y. and S.-K. Kim, Chitosan Derivatives Killed Bacteria by Disrupting the Outer and Inner Membrane. Journal of Agricultural and Food Chemistry, 2006. 54(18): p. 6629-6633. 25. Rabea, E.I., et al., Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules, 2003. 4(6): p. 1457-1465. 26. Hukari, R., I.M. Helander, and M. Vaara, Chain length heterogeneity of lipopolysaccharide released from Salmonella typhimurium by ethylenediaminetetraacetic acid or polycations. European Journal of Biochemistry, 1986. 154(3): p. 673-676. 27. Akhavan, O., Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. Journal of Colloid and Interface Science, 2009. 336(1): p. 117-124. 28. Lipson, R.L., et al.,, Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease. J. Thorac. Cardiovasc. Surg., 1961. 42: p. 623-629. 29. Diamond, I., et al., PHOTODYNAMIC THERAPY OF MALIGNANT TUMOURS. The Lancet, 1972. 300(7788): p. 1175-1177. 30. Dolmans, D.E.J.G.J., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nat Rev Cancer, 2003. 3(5): p. 380-387. 31. Hsi, R.A., D.I. Rosenthal, and E. Glatstein, Photodynamic Therapy in the Treatment of Cancer: Current State of the Art. Drugs, 1999. 57(5): p. 725-734. 32. Soukos, N.S., et al., Photodynamic effects of toluidine blue on human oral keratinocytes and fibroblasts and Streptococcus sanguis evaluated in vitro. Lasers in Surgery and Medicine, 1996. 18(3): p. 253-259. 33. Donnelly, R.F., P.A. McCarron, and M.M. Tunney, Antifungal photodynamic therapy. Microbiological Research, 2008. 163(1): p. 1-12. 34. Zeina, B., et al., Killing of cutaneous microbial species by photodynamic therapy. British Journal of Dermatology, 2001. 144(2): p. 274-278. 35. Campisi, J., The biology of replicative senescence. European Journal of Cancer, 1997. 33(5): p. 703-709. 36. Zakian, V.A., Telomeres: Beginning to Understand the End. Science, 1995. 270(5242): p. 1601-1607. 37. Harley, C.B. and B. Villeponteau, Telomeres and telomerase in aging and cancer. Current Opinion in Genetics & Development, 1995. 5(2): p. 249-255. 38. Goldstein, S., Replicative senescence: the human fibroblast comes of age. Science, 1990. 249(4973): p. 1129-1133. 39. Kyo, S., et al., Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT). Nucleic Acids Research, 2000. 28(3): p. 669-677. 40. Mitchell, K.C.a.J.R., Telomerase in the human organism. Oncogene, 2002. 21: p. 564-579. 41. Kim, N., et al., Specific association of human telomerase activity with immortal cells and cancer. Science, 1994. 266(5193): p. 2011-2015. 42. Shay, J.W. and S. Bacchetti, A survey of telomerase activity in human cancer. European Journal of Cancer, 1997. 33(5): p. 787-791. 43. Seiji Kondo, Y.K., Guiying Li, Robert H Silverman, John K Cowell, Targeted therapy of human malignant glioma in a mouse model by 2-5A antisense directed against telomerase RNA. Oncogene, 1998. 16: p. 3323-3330. 44. Yokoyama, Y., et al., The 5'-End of hTERT mRNA Is a Good Target for Hammerhead Ribozyme to Suppress Telomerase Activity. Biochemical and Biophysical Research Communications, 2000. 273(1): p. 316-321. 45. Damm, K., et al., A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J, 2001. 20(24): p. 6958-6968. 46. Naasani, I., H. Seimiya, and T. Tsuruo, Telomerase Inhibition, Telomere Shortening, and Senescence of Cancer Cells by Tea Catechins. Biochemical and Biophysical Research Communications, 1998. 249(2): p. 391-396. 47. Read, M., et al., Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proceedings of the National Academy of Sciences, 2001. 98(9): p. 4844-4849. 48. Mergny, J.-L., et al., Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proceedings of the National Academy of Sciences, 2001. 98(6): p. 3062-3067. 49. Huang, F.-C., et al., G-Quadruplex Stabilizer 3,6-Bis(1-Methyl-4-Vinylpyridinium)Carbazole Diiodide Induces Accelerated Senescence and Inhibits Tumorigenic Properties in Cancer Cells. Molecular Cancer Research, 2008. 6(6): p. 955-964. 50. Chang, C.-C., et al., A Novel Carbazole Derivative, BMVC: a Potential Antitumor Agent and Fluorescence Marker of Cancer Cells. Chemistry & Biodiversity, 2004. 1(9): p. 1377-1384. 51. Kang, C.-C., et al., A Dual Selective Antitumor Agent and Fluorescence Probe: the Binary BMVC–Porphyrin Photosensitizer. ChemMedChem, 2008. 3(5): p. 725-728. 52. 羅敏慈, 新型光感物質 BMVC 之特性分析及其光動力抑菌作用. 國立台灣大學,微生物與生化學研究所碩士論文, 2008. 53. 劉育妏, 增強光動力殺菌物質CX的角色探討. 國立台灣大學,微生物與生化學研究所碩士論文, 2009. 54. Denyer, S.P. and J.Y. Maillard, Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. Journal of Applied Microbiology, 2002. 92: p. 35S-45S. 55. Patrick, D.A., et al., Anti-Pneumocystis carinii pneumonia activity of dicationic carbazoles. European Journal of Medicinal Chemistry, 1997. 32(10): p. 781-793. 56. Byron, L.B., et al., Dicationic Furans Inhibit Development of Cryptosporidium parvum in HSD/ICR Suckling Swiss Mice. The Journal of Parasitology, 1998. 84(4): p. 851-856. 57. Del Poeta, M., et al., In Vitro Antifungal Activities of a Series of Dication-Substituted Carbazoles, Furans, and Benzimidazoles. Antimicrob. Agents Chemother., 1998. 42(10): p. 2503-2510. 58. Chang, C.-C., et al., A Fluorescent Carbazole Derivative: High Sensitivity for Quadruplex DNA. Analytical Chemistry, 2003. 75(22): p. 6177-6183. 59. Kubo, I., et al., Antibacterial activity of long-chain alcohols: the role of hydrophobic alkyl groups. Bioorganic & Medicinal Chemistry Letters, 1993. 3(6): p. 1305-1308. 60. Vinaya, K., et al., Synthesis and antimicrobial activity of 1-benzhydryl- sulfonyl-4-(3-(piperidin-4-yl) propyl)piperidine derivatives against pathogens of <i>Lycopersicon esculentum</i> : A structure-activity evaluation study. Archives of Pharmacal Research, 2009. 32(1): p. 33-41. 61. Bedi, P.M.S., M.P. Mahajan, and V.K. Kapoor, Amidine derived 1,3-diazabuta-1,3-dienes as potential antibacterial and antifungal agents. Bioorganic & Medicinal Chemistry Letters, 2004. 14(14): p. 3821-3824. 62. Gillette, J.R., OVERVIEW OF DRUG-PROTEIN BINDING. Annals of the New York Academy of Sciences, 1973. 226(1): p. 6-17 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34029 | - |
dc.description.abstract | 目前臨床上面對微生物的感染主要是使用抗生素來進行治療。為了解決近來抗藥性的問題,光動力殺菌逐漸受到重視並成為治療微生物感染另一項選擇。光動力殺菌與傳統抗生素殺菌的作用機制不同,主要是當光感物質受到特定波長光線激發後,可迅速產生單態氧與自由基對微生物造成嚴重破壞,進一步達到毒殺的效果。
BMVC為一對正常細胞毒性很低、且帶正電的小分子化合物。由本研究的結果發現,BMVC確實能夠增強光動力對革蘭氏陽性菌的殺菌效果,其中也包括抗藥性菌株。然而對於革蘭氏陰性菌綠膿桿菌並無明顯殺菌效果。BMVC十二個長碳鏈的衍生物 (BMVC-12C) 經標準藥物敏感性測試,實驗結果發現針對金黃色葡萄球菌之最低殺菌濃度為8 ug/ml,顯示此藥物對於金黃色葡萄球菌具有明顯的毒殺效果。實驗結果也發現BMVC-12C之殺菌效果與菌數有很大關聯。此外,我們也發現BMVC-12C在培養液中之殺菌效果不佳,可能是受到培養液中蛋白質或其他物質的干擾。因此未來在臨床的治療上,應首要解決血液或組織中蛋白質的干擾,以提高此類藥物的殺菌能力與應用價值。 | zh_TW |
dc.description.abstract | Presently, antibiotics are the most common antimicrobial agents used for the treatment of infection caused by bacteria and fungi. However, the growing of drug-resistance among pathogenic microorganisms has become a significant problem due to the improper use of antibiotics. Photodynamic inactivation (PDI) is an alternative antimicrobial treatment based on the excitation of photosensitizers (PSs) after irradiated with an appropriate wavelength of light. This process can generate reactive oxygen species to destroy and kill microorganisms.
3,6-bis (1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC) is a small molecule with positive charge, and with very low toxicity toward normal cells. In this study, we investigate the possibility of using BMVC as an antimicrobial agent. We found that BMVC can enhance the TBO-mediated photodynamic inhibition against gram-positive bacteria and antibiotics resistant strains. In addition, we also found that BMVC derivative, BMVC-12C alone, has bactericidal effect against gram-positive bacteria. The minimum bactericidal concentration of BMVC-12C against Staphylococcus aereus is about 8 ug/ml. However, the antibacterial efficacy of BMVC-12C was reduced in culture medium compared to that of PBS. This may be due to the interference of proteins in medium. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T05:52:04Z (GMT). No. of bitstreams: 1 ntu-100-R98b47412-1.pdf: 3270536 bytes, checksum: a0acc7b13724f2f4746cc84324b2c971 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 第一章 緒論 1
1 人類與微生物 1 1.1 正常菌群 1 1.2 院內感染 1 1.3 常見感染之細菌與引起之疾病 2 2 微生物感染之治療 4 2.1 抗生素的發展與分類 4 2.2 抗生素抑菌效果之評估 5 2.3 抗藥性的產生 6 2.4非抗生素之抗菌物質 7 3 光動力治療 9 3.1 光動力治療之歷史與應用 9 3.2 光動力作用原理與機制 10 3.3 光感物質 11 3.4 光動力殺菌 11 4 BMVC 13 4.1 BMVC相關之早期研究 13 4.2 BMVC之應用 14 5 研究動機與目的 16 第二章 材料與方法 17 2.1 藥品與儀器 17 2.1-1 藥品 17 2.1-2 儀器 17 2.2 菌種來源與保存方法 18 2.2-1 菌種來源 18 2.2-2 菌種保存與活化 18 2.3 實驗方法 19 2.3-1 光感物質原液之配製 19 2.3-2 BMVC 與其衍生物原液之配置 19 2.3-3懸浮菌體培養 19 2.3-4 光動力殺菌 19 2.3-5 BMVC與其衍生物之殺菌效果測試 20 2.3-6 BMVC與其衍生物結合光動力殺菌 20 2.3-7 抗生素敏感性分析 20 2.3-8 紙錠測試 21 第三章 結果 22 3.1 不同濃度光感物質進行光動力殺菌之效果測試 22 3.2 BMVC增強光動力殺菌之效果測試 23 3.3 BMVC與其衍生物增強光動力殺菌之效果測試 24 3.4 BMVC-12C對綠膿桿菌之毒性測試 25 3.5 藥物敏感性分析 25 3.6 以紙錠測試分析對藥物之敏感性 27 3.7 BMVC-12C於培養液或PBS中之殺菌效果分析 28 第四章 討論 29 4.1光動力殺菌結果之分析 29 4.2 BMVC增強光動力殺菌之效果探討 29 4.3 BMVC與其衍生物增強光動力殺菌之效果探討 31 4.4 BMVC-12C對綠膿桿菌毒性測試之探討 32 4.5 細菌對於不同藥物敏感性之探討 32 4.6 BMVC-12C於培養液與PBS中之殺菌效果探討 33 第五章 結論與未來工作 35 圖表 36 附圖表 61 參考文獻 67 | |
dc.language.iso | zh-TW | |
dc.title | BMVC與其衍生物增強光動力殺菌之探討 | zh_TW |
dc.title | The effect of BMVC and its derivatives following photodynamic inactivation against bacteria | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃慶璨,許瑞祥,蔡翠敏,張大釗 | |
dc.subject.keyword | 光動力殺菌,抗生素,抗藥性菌株,BMVC, | zh_TW |
dc.subject.keyword | Photodynamic inhibition,Antibiotics,Antibiotics resistant bacteria,BMVC, | en |
dc.relation.page | 71 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-26 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 3.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。