請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34016完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊德良(Der-Liang Young) | |
| dc.contributor.author | Shuen-Jong Tsorng | en |
| dc.contributor.author | 欉順忠 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:51:40Z | - |
| dc.date.available | 2007-07-19 | |
| dc.date.copyright | 2006-07-19 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-04 | |
| dc.identifier.citation | Aidun, C.K., Triantafillopoulos, N.G. & Benson J.D. 1991 Global stability of a lid-driven cavity with throughflow: Flow visualization studies. Phys. Fluids A 3(9), 2081-2091.
Adrian, R.J. 1991 Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261-304. Adrian, R.J. 2005 Twenty years of particle image velocimetry. Exp. Fluids 39(2), 159-169. Ashcroft, G. & Zhang X. 2005 Vortical structures over rectangular cavities at low speed. Phys. Fluids 17, 015104, 1-8. Asmolov, E.S. 1999 The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 381, 63-87. Batchelor, G.K. 1967 An Introduction to Fluid Dynamics. Cambridge Univ. Press. Bagchi, P. & Balachandar, S. 2002 Shear versus vortex-induced lift force on a rigid sphere at moderate Re. J. Fluid Mech. 473, 379-388. Billy, F., Pineau, G., David, L. & Arghir, M. 2003 Experimental study of incompressible flow in grooved channels. Proceedings of PSFVIP-4, F4077, 1-6. Bretherton, F.P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284-304. Brown, R.G. & Hwang, P.Y.C. 1997 Introduction to random signals and applied Kalman filtering. Wiley, New York. Burggraf, O.R. 1966 Analytical and numerical studies of the structure of steady separated flows. J. Fluid Mech. 24, 113-151. Capart, H., Young, D.L. & Zech, Y. 2002 Voronoï imaging methods for the measurement of granular flows. Exp. Fluids 32, 121-135. Castellari, S., Griffa, A., Özgökmen, T.M. & Poulain, P.M. 2001 Prediction of particle trajectories in Adriatic Sea using Lagrangian data assimilation. J. Mar. Syst. 29, 33-50. Chiang, T.P. & Sheu, W.H. 1997 Numerical prediction of eddy structure in a shear-driven cavity. Comput. Mech. 20, 379-396. Chiang, T.P., Hwang, R.R. & Sheu, W.H. 1997 On end-wall corner vortices in a lid-driven cavity. J. Fluids Eng. 119, 201-204. Chiang, T.P., Sheu, W.H. & Hwang, R.R. 1998 Effect of Reynolds number on the eddy structure in a lid-driven cavity. Int. J. Numer. Meth. Fluids 26, 577-579. Chien, W.L., Rising, H. & Ottino, J.M. 1986 Laminar mixing and chaotic mixing in several cavity flows. J. Fluid Mech. 170, 355-377. Cleveland, W.S. 1979 Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829-836. Coimbra, C.F.M. & Kobayashi, M.H. 2002 On the viscous motion of a small particle in a rotating cylinder. J. Fluid Mech. 469, 257-286. Daube, O. 1992 Resolution of the 2D Navier-Stokes equations in velocity vorticity form by means of an influence matrix technique. J. Comput. Phys. 103(2), 402-414. Douxchamps, D., Devriendt, D., Capart, H., Craeye, C., Macq, B. & Zech, Y. 2005 Stereoscopic and velocimetric reconstructions of the free surface topography of antidune flows. Exp. Fluids 39(3), 533-551. Eloot, S., De Bisschop, F. & Verdonck, P. 2004 Experimental evaluation of the migration of spherical particles in three-dimensional Poiseuille flow. Phys. Fluids 16(7), 2282-2293. Fasel, H. 1976 Investigation of stability of boundary-layers by a finite-difference model of Navier-Stokes equations. J. Fluid. Mech. 78, 355-383 Feng, J., Hu, H.H. & Joseph, D.D. 1994 Direct simulation of initial values problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows. J. Fluid. Mech. 277, 271-301. Freitas, C.J., Street, R.L., Findikakis, A.N. & Koseff, J.R. 1985 Numerical simulation of three-dimensional flow in a cavity. Int. J. Numer. Methods Fluids 5, 561-575. Gary, J., McCormick, S. & Sweet, R. 1983 Successive overrelaxation, multigrid, and preconditioned conjugate gradients algorithms for solving a diffusion problem on a vector computer. Appl. Math. Comput. 13, 285-309. Guermond, J.-L., Migeon, C., Pineau, G. & Quartapelle, L. 2002 Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at Re = 1000. J. Fluid. Mech. 450, 169-199. Guj, G. & Stella, F. 1993 A vorticity-velocity method for the numerical solution of 3D incompressible flows. J. Comput. Phys 106, 286-298. Guler, M., Edil, T.B. & Bosscher, P.J. 1999 Measurement of particle movement in granular soil using image analysis. J. Comp. Civ. Eng. 13,116-122. Han, M., Kim, C., Kim, M. & Lee, S. 1999 Particle migration in tube flow of suspensions. J. Rheol. 43(5), 1157-1174. Ho, B.P. & Leal, L.G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65, 365-400. Högberg, M., Chevalier, M. & Henningson, D.S. 2003 Linear compensator control of a pointsource induced perturbation in a Falkner-Skan-Cooke boundary layer. Phys Fluids 15(8), 2449-2452. Hu, C.C. 2003 Analysis of motility for aquatic sperm in videomicroscopy. MSc thesis, Department of Bio-Industrial Mechatronics Engineering, National Taiwan University. Hwang, W.R., Anderson, P.D. & Hulsen, M.A. 2005 Chaotic advection in a cavity flow with rigid particles. Phys. Fluids 17, art. 043602, 1-12. Hwu, T.Y. 2006 Fluid stirrings in a circular cavity with various driven boundaries. Eur. J. Mech. B/Fluids 25, 192-203. Ide, K. & Ghil, M. 1997 Extended Kalman filtering for vortex systems. Part I: Methodology and point vortices. Dyn. Atmos. Oceans 27, 301-332. Ito, M., Tsujimichi, S. & Kosuge, Y. 2001 Tracking a three-dimensional moving target with distributed passive sensors using extended Kalman filter. Electron. Commu. Japan Part 1 84(7), 74-85. Jain, R., Kasturi, R. & Schunck, B.G. 1995 Machine Vision. McGraw-Hill, New York. Joseph, D.D. & Ocando, D. 2002 Slip velocity and lift. J. Fluid Mech. 454, 263-286. Kalman, R.E. 1960 A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 82D, 35-45. Kalman, R.E. & Bucy, R.S. 1961 New results in linear filtering and prediction problems. Trans. ASME J. Basic Eng. 83D, 95-108. Kawase, T., Tsurunosono, H., Ehara, N. & Sasase, I. 2001 A Kalman tracker with a turning acceleration estimator. Electron.Commu. 84, No.1, 1-11. Kieft, R.N., Schreel, K.R.A.M., van der Plas, G.A.J. & Rindt, C.C.M. 2002 The application of a 3D PTV algorithm to a mixed convection flow. Exp. Fluids 33, 603-611. Koseff, J.R. & Street, R.L. 1984a Visualization studies of a shear driven three-dimensional recirculating flow. Trans. ASME: J. Fluids Eng. 106, 21-29. Koseff, J.R. & Street, R.L. 1984b On end wall effects in a lid-driven cavity flow. Trans. ASME: J. Fluids Eng. 106, 385-389. Koseff, J.R. & Street, R.L. 1984c The lid-driven cavity flow: a synthesis of qualitative and quantitative observations. Trans. ASME: J. Fluids Eng. 106, 390-398. Kurose, R. & Komori, S. 1999 Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid Mech. 384, 183-206. Lauga, E. & Bewley, T.R. 2004 Performance of a linear robust control strategy on a nonlinear model of spatially developing flows. J. Fluid Mech. 512, 343-374. Liao, J.I. 2002 Trajectory and velocity determination by smoother. MSc Thesis, Department of Electrical Engineering, National Taiwan University. Lim, E.A., Coimbra, C.F.M. & Kobayashi, M.H. 2005 Dynamics of suspended particles in eccentrically rotating flows. J. Fluid Mech. 535, 101-110. Lo, D.C., Murugesan, K. & Young, D.L. 2005 Numerical solution of three-dimensional velocity-vorticity Navier-Stokes equations by finite difference method. Int. J. Numer. Methods Fluids 47, 1469-1487. Maas, H.G., Gruen, A. & Papantoniou, D. 1993 Particle tracking velocimetry in three-dimensional flows. Part 1: Photogrammetric determination of particle coordinates. Exp. Fluids 15, 133-146. Matas, J.-P., Morris, J.F. & Guazzelli, É. 2004a Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515, 171-195. Matas, J.-P., Morris, J.F. & Guazzelli, É. 2004b Lateral forces on a sphere. Oil Gas Sci. Technol. Rev. IFP 59, 59-70. Migeon, C. 2002 Details on the start-up development of the Taylor-Gortler-like vortices inside a square-section lid-driven cavity for 1,000 ≤ Re ≤ 3,200. Exp. Fluids 33, 594-602. Migeon, C., Texier, A., & Pineau, G. 2000 Effects of lid-driven cavity shape on the flow establishment phase. J. Fluids Struct. 14, 469-488. Migeon, C., Pineau, G. & Texier, A., 2003 Three-dimensionality development inside standard parallelepipedic lid-driven cavities at Re=1000. J. Fluids Struct. 17, 717-738. Murugesan, K., Lo, D.C. & Young, D.L. 2005 An efficient global matrix free finite element algorithm for 3D flow problems. Comm. Numer. Meth. Eng. 21(3), 107-118. Pakdel P. & McKinley G.H. 1998 Cavity flows of elastic liquids: Purely elastic instabilities. Phys. Fluids 10(5), 1508-1070. Pan, F. & Acrivos, A. 1967 Steady flows in rectangular cavities. J. Fluid. Mech. 28, 643-655. Pan, X.H., Luo, R., Yang, X.Y. & Yang, H.J. 2002 Three-dimensional particle image tracking for dilute particle-liquid flows in a pipe. Meas. Sci. Technol. 13, 1206-1216. Pan, T.W. & Glowinski, R. 2005 Direct simulation of the motion of neutrally buoyant balls in a three-dimensional Poiseuille flow. C.R. Mecanique 333, 884-895. Pozrikidis, C. 1992 Boundary integral and singularity methods for linearized viscous flow. Cambridge Univ. Press. Rubinow, S.I. & Keller, J.B. 1961 The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11, 447-459. Saffman, P.G. 1965 Lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385-400. Segré, G. & Silberberg, A. 1961 Radial particle displacements in Poiseuille flow of suspensions. Nature 189, 209-210. Segré, G. & Silberberg, A. 1962 Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J. Fluid Mech. 14, 115-135. Segré, G. & Silberberg, A. 1962 Behaviour of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation. J. Fluid Mech. 14, 136-157. Shah, M., Rangarajan, K. & Tsai, P.S. 1993 Motion trajectories. IEEE Trans. Syst. Man. Cybern. 23(4), 1138-1150. Shankar, P.N. 1997 Three-dimensional eddy structure in a cylindrical container. J. Fluid Mech. 342, 97-118. Shankar, P.N. 1998 Three-dimensional Stokes flow in a cylindrical container. Phys. Fluids 10(3), 540-549. Shankar, P.N. & Deshpande, M.D. 2000 Fluid mechanics in the driven cavity. Annu. Rev. Fluid Mech. 32, 93-136. Shen, L., Song, X., Iguchi, M. & Yamamoto, F. 2000 A method for recognizing particles in overlapped particle images. Pattern Recogn. Lett. 21, 21-30 Sheu, T.W.H. & Tsai, S.F. 2002 Flow topology in a steady three-dimensional lid-driven cavity. Comput. Fluids 31, 911-934. Shu, C.-W, & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77(2), 439-471. Shu, C., Wang, L. & Chew, Y.T. 2003 Numerical computation of three-dimensional incompressible Navier-Stokes equations in primitive variable form by DQ method. Int. J. Numer. Methods Fluids 43, 345-368. Spinewine, B., Capart, H., Larcher, M. & Zech, Y. 2003 Three-dimensional Voronoï imaging methods for the measurement of near-wall particulate flows. Exp. Fluids 34, 227-241. Tsorng, S.J., Capart, H., Lai, J.S. & Young, D.L. 2006 Three-dimensional tracking of the long time trajectories of suspended particles in a lid-driven cavity flow. Exp. Fluids 40(2), 314-328. Ushijima, S. & Tanaka, N. 1996 Three-dimensional particle tracking velocimetry with laser-light sheet scannings. J. Fluids Eng. 118, 352-357. Veber, P., Dahl, J. & Hermansson, R. 1997 Study of the phenomena affecting the accuracy of a video-based particle tracking velocimetry technique. Exp. Fluids 22, 482-488. Virant, M. & Dracos, T. 1997 3D PTV and its application on Lagrangian motion. Meas. Sci. Technol. 8, 1539-1552. Welch, G. & Bishop, G. 2001 An introduction to the Kalman filter. Course 8, SIGGRAPH 2001, Los Angeles, August 2001, ACM. Wu, H.X., Wu, J.Z., & Wu, J.M. 1995 Effective vorticity-velocity formulations for three-dimensional incompressible viscous flow. J. Comput. Phys. 122, 68-82. Yang, Y., Straatman, A.G., Martinuzzi, R.J. & Yanful, E.K. 2002 A study of laminar flow in low aspect ratio lid-driven cavities. Can. J. Civ. Eng. 29, 436-447. Yang, B.H., Wang, J., Joseph, D.D., Hu, H.H., Pan, T.-W. & Glowinski, R. 2005 Migration of a sphere in tube flow. J. Fluid Mech. 540, 109-131. Zeng, L., Balachandar, S. & Fischer, P. 2005 Wall-induced forces on a rigid sphere at finite Reynolds number. J. Fluid Mech. 536, 1-25 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/34016 | - |
| dc.description.abstract | 本研究以試驗方式及一系列之分析描述顆粒於三維穴室流場內之運動軌跡。試驗中共使用兩種大小不同之顆粒及試驗佈置。首先以雷射光頁激發微顆粒及長曝光技術進行流場顯影。再者,利用立體影像技術量測粗顆粒之三維空間位置,並應用卡門濾波平滑顆粒運動軌跡及降低量測誤差。為補足試驗上之不足,本研究中亦分析利用有限差分法求解三維速度-渦度Navier-Stokes方程式之速度場,進而得穴室內之細部流場結構,然相關之分析則代表流體顆粒之運動。經三維顆粒追蹤試驗,結果顯示粗顆粒運動軌跡於縱向呈現螺旋方式,然橫向部分則於邊牆及中心對稱面之間來回移動。研究中進一步透過Eulerian及Lagrangian觀點進行流體顆粒、微顆粒及粗顆粒間運動特性之比較,其中包括運動軌跡及速度。其比較結果可歸納出兩點值得深入探討之現象:1) 雖然粗顆粒之估計速度與流體顆粒速度相近,但粗顆粒於運動過程中總侷限於主渦漩內,反之,流體顆粒與微顆粒皆可連接於主渦漩及次渦漩間。2) 當雷諾數增加時,粗顆粒於主渦漩內之運動軌跡愈趨集中於穴室之邊界。最後,文中提出顆粒與液體之微小密度差異、空間限制、慣性力影響及顆粒旋轉效應等四點造成上述現象之可能原因,並進一步以試驗方式進行檢查,然檢查結果摒除顆粒與液體之微小密度差異之原因。空間限制部分則為顆粒大小所形成之限制,此項原因影響粗顆粒通過流線廊道而進入次渦漩之可能。此外,慣性力影響粗顆粒運動則表現於雷諾數之大小與軌跡分佈之變化關係。若比較顆粒旋轉特性時亦發現粗顆粒之旋轉慣性造成與流體顆粒間極大之差異。 | zh_TW |
| dc.description.abstract | Experiments and analysis are performed to character three-dimensional particle paths in a lid-driven cavity. Two types of particles with various diameters and experimental methods are utilized in this thesis. Illuminated micro-particles and artificial long exposure techniques visualize two-dimensional flow field. Stereo image methods measure three-dimensional macro-particle positions and Kalman filter efficiently attenuates measurement errors. To complement of experiments, analysis of velocity fields from three-dimensional Navier-Stokes equations in velocity-vorticity formulation solved by finite difference method extract details of flow structures and these computations stand for motions of fluid-particles. Stereo tracking experiments delineate macro-particle shuttling to and fro from side wall to centre plane in spiral way in cavity flow. Mutual comparisons of trajectories and velocities for fluid- (passive tracers), micro- and macro-particles are carried out in Lagrangian and Eulerian viewpoints to highlight similarities and discrepancies among them. There are two interesting phenomena: 1) macro-particle paths are only confined in primary eddy region even if trajectories and velocities of macro-particle matches computational fluid-particle results, whereas fluid- and micro-particles migrate to primary and corner vortices; 2) preferential paths of macro-particle approach to boundary walls while Re increasing. We afterward come up with some possible mechanisms to explain observations such as density mismatch, steric effect, inertia effect and particle rotation. After further examinations, density mismatch is excluded. The steric effect due to particle size gives an evident limitation for invasion of corner eddies through streamline corridors. Inertia effects contain the Reynolds number dependence of macro-particle trajectories and significant deviation of macro-particle rotation rate relative to fluid-particle. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:51:40Z (GMT). No. of bitstreams: 1 ntu-95-D90521003-1.pdf: 3687120 bytes, checksum: 5b4d3eba2c70868a6c85e671915b5514 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Abstract 1
Abstract (in Chinese) 2 Acknowledgements 3 Table List 7 Figure List 8 Chapter 1 Introduction 11 1.1 Cavity flow and motivation 12 1.2 Particle tracking and Kalman filter 15 1.3 Computations of cavity flow 16 1.4 Particle migration 18 1.5 Arrangement of chapters 19 Chapter 2 Experiments 21 2.1 Lid-driven cavity model 22 2.2 Liquids and particles 24 2.3 Two-dimensional flow field visualization 29 2.4 Injected micro-particle dispersal 29 2.5 Three-dimensional macro-particle tracking 30 2.6 Examinations of lid-driven cavity flow field 32 2.7 Cases 35 Chapter 3 Particle positioning 39 3.1 Particle positioning on images 40 3.2 Three-dimensional stereo positioning 44 3.3 Camera calibration 46 3.4 Error estimation 49 Chapter 4 Kalman filter 53 4.1 Measurements and signal models in position-velocity formulation 54 4.2 Forward Kalman filter for data without gaps 56 4.3 Forward Kalman filter for data with gaps 58 4.4 Forward-backward Kalman filter 61 4.5 Filter tuning 62 4.6 Kalman filter in position-velocity-acceleration formulation 65 Chapter 5 Navier-Stokes computations 69 5.1 Numerical methods 70 5.2 Validations 71 5.3 Eddy structures of lid-driven cavity flow 73 Chapter 6 Results of three-dimensional macro-particle tracking 77 6.1 Time series of particle positions 78 6.2 Three-dimensional trajectory of an individual particle 80 6.3 Comparisons with laser-illuminated micro-particle tracks 83 6.4 Trajectories of 10 orbiting macro-particles 85 Chapter 7 Results of comparisons for fluid-, micro- and macro-particle motions 89 7.1 Micro-particle tracks and fluid streamlines 90 7.2 Dispersal of injected micro-particles 97 7.3 Macro-particle position and velocity histories 101 7.4 Trajectories of macro-particles 109 7.5 Transverse movement of macro-particles 116 7.6 Observations of different Reynolds numbers 120 Chapter 8 Possible path divergence mechanisms 129 8.1 Density effects 130 8.2 Steric effects 131 8.3 Inertia effects 134 8.4 Particle rotation relative to the fluid 136 Chapter 9 Conclusions and Recommendations 139 9.1 Conclusions 140 9.1.1 Three-dimensional tracking of long time trajectory of macro-particle 140 9.1.2 Three-dimensional paths of fluid-, micro- and macro-particles 141 9.2 Recommendation 144 9.2.1 Particle tracking techniques 144 9.2.2 Particle-fluid interactions 146 References 151 Appendix 1 159 Appendix 2 161 | |
| dc.language.iso | en | |
| dc.subject | 顆粒運動 | zh_TW |
| dc.subject | 三維穴室流場 | zh_TW |
| dc.subject | 立體影像技術量測 | zh_TW |
| dc.subject | 顆粒追蹤 | zh_TW |
| dc.subject | 卡門濾波 | zh_TW |
| dc.subject | stereo particle tracking | en |
| dc.subject | particle motion | en |
| dc.subject | Kalman filter | en |
| dc.subject | cavity flow | en |
| dc.title | 顆粒於穴室流場內之三維軌跡試驗及分析 | zh_TW |
| dc.title | Three-dimensional particle paths in a lid-driven cavity flow: experiments and analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 卡艾瑋(Herve Capart) | |
| dc.contributor.oralexamcommittee | 賴進松(Jihn-Sung Lai),廖清標(Ching -Biao Liao),杜其永(Kiwing To),蕭述三(Shu-San Hsiau) | |
| dc.subject.keyword | 三維穴室流場,立體影像技術量測,顆粒追蹤,卡門濾波,顆粒運動, | zh_TW |
| dc.subject.keyword | cavity flow,stereo particle tracking,Kalman filter,particle motion, | en |
| dc.relation.page | 164 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 3.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
