Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33936
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝國煌(Kuo-Huang Hsieh)
dc.contributor.authorChia-Yin Chenen
dc.contributor.author陳佳吟zh_TW
dc.date.accessioned2021-06-13T05:49:27Z-
dc.date.available2008-07-14
dc.date.copyright2006-07-14
dc.date.issued2006
dc.date.submitted2006-07-06
dc.identifier.citation1. R.G. Craig, J.M. Powers. Restorative dental materials. Mosby Inc. 2002; 11thed.: 4-17.
2. R.L. Brown. Dental filling material comprising vinyl silane treated fused silica and a binder consisting of the reaction product of bis phenol and glycidyl acrylate. US Patent 1962; US 3066112.
3. R.G. Craig, J.M. Powers, J.C. Wataha. Dental materials properties and manipulation. Mosby Inc. 2000; 7th ed.: 59.
4. R.G. Craig, J.M. Powers. Restorative dental materials. Mosby Inc. 2002; 11thed.: 237-244.
5. K.H. Chung. The relationship between composition and properties of posterior resin composites. J. Dent. Res. 1990; 69: 852-856.
6. J. Manhart, K.H. Kunzelmann, H.Y. Chen, R. Hickel. Mechanical properties of new composite restorative materials. J. Biomed. Materi. Res. 2000; 53:353-361.
7. S. B. Mitra, S.Wu, B.N. Holmes. An application of nanotechnology in advanced dental materials. JADA 2003; 134: 1382-1390.
8. D. B. Boyer, Y. Chalkley, K.C. Chan. Correlation between strength of bonding to enamel and mechanical properties of dental composites. J. Biomed. Materi. Res. 1982; 16:775-783.
9. G. Schottner. Hybrid sol-gel-derived polymers: applications of multifunctional materials. Chem. Mater. 2001; 13: 3422-3435.
10. B.L. Elodie, L. Jacques. Encapsulation of inorganic particles by dispersion polymerization in polar media 1. silica nanoparticles encapsulated by polystyrene. J. Colloid Interface Sci. 1998; 197: 293-308.
11. I. sondi, T.H. Fedynyshyn, R. Sinta, E. Matijevic. Encapsulation of nanosized silica by in situ polymerization of tert-butyl acrylate monomer. Langmuir 2000; 16: 9031-9034.
12. D.A. Tilbrook, R.L. Clarke, N.E. Howle, M. Braden. Photocurable epoxy-polyol matrices for use in dental composites I. Biomaterials 2000; 21: 1743-1753.
13. Y.H. Bağis, F.A. Rueggeberg. Effect of post-cure temperature and heat duration on monomer conversion of photo-activated dental resin composite. Dent. Mater. 1997; 13:228-232.
14. H. Tarumi, S. Imazato, A. Ehare, S. Kato, N. Ebi, S. Ebisu. Post-irradiation polymerization of composites containing bis-GMA and TEGDMA. Dent. Mater. 1999; 15:238-242.
15. W.D. Cook. Photopolymerization kinetics of dimethacrylates using the camphorquinone/amine initiator system. Polymer 1992; 33: 600-609.
16. Q. Yu, S. Nauman, J.P. Santerre, S. Zhu. UV photopolymerization behavior of dimethacrylate oligomers with comphorquinone/Amine initiator system. J. Appl. Polym. Sci. 2001; 82: 1107-1117.
17. K.D. Ahn, D.K. Han, S.H. Lee, C.W. Lee. New aromatic tert-amines for application as photoinitiator components in photocurable dental materials. Macromol. Chem. Phys. 2003; 204: 1628-1635.
18. G. Odian. Principles of polymerization. John Wiley & Sons, Inc. 2004; 4th ed.: 198-238.
19. I. Pyszka, Z. Kucybała, J. Pączkowski. Reinvestigation of the mechanism of the free radical polymerization photoinitiation process by comphorquinone-coinitiator systems: new results. Macromol. Chem. Phys. 2004; 205: 2371-2375.
20. C.L. Davidson, Ivar A. Mjör. Advances in glass-ionomer cements. Quintessence Publishing Co, Inc. 1999: 18.
21. R.G. Craig, J.M. Powers, J.C. Wataha. Dental materials properties and manipulation. Mosby, Inc. 2000; 7th ed.: 64.
22. S. Carraher 著, 薛敬和 譯. 高分子化學. 高立出版社. 2000 ; 3rd ed.: p.367-422.
23. G. Odian. Principles of polymerization. John Wiley & Sons, Inc. 2004; 4th ed.: 285.
24. S.P. Pappas. UV curing: science and technology Vol. II. Technology Marketing Corporation. 1985: 4-22.
25. 柯清水.新世紀化工化學大辭典.正文書局有限公司.2000; 1st ed.: 7.
26. K.D. Ahn, C.M. Chung, Y.H. Kim. Synthesis and photopolymer- ization of multifunctional methacrylates derived from bis-GMA for dental applications. J. Appl. Polym. Sci. 1999; 71: 2033- 2037.
27. D.K. Han, K.D. Ahn, J.M. Kim, J.H. Jeong. Photopolymerizable composite resin compositions for dental restoration. US Patent 2002; US 6,339,113 B1.
28. J.E. Klee, F. Neidhart, H.J. Flammersheim, R. Mülhaupt. Monomers for low shrinking composites, 2a: Synthesis of branched methacrylates and their application in dental composites. Macromol. Chem. Phys. 1999; 200: 517–523.
29. C.M. Chung, J.G. Kim, M.S. Kim, K.M. Kim, K.N. Kim. Development of a new photocurable composite resin with reduced curing shrinkage. Dent. Mater. 2002; 18: 174-178.
30. C.M. Chung, M.S. Kim, J.G. Kim, D.O. Jang. Synthesis and photopolymerization of trifunctional methacrylates and their application as dental monomers. J. Biomed. Materi. Res. 2002; 62: 622–627.
31. J.G. Kim, C.M. Chung. Trifunctional methacrylate monomers and their photocured composites with reduced curing shrinkage, water sorption, and water solubility. Biomaterials 2003; 24: 3845–3851.
32. Y. Kim, C. K. Kim, B. H. Cho, H. H. Son, C. M. Um, O. Y. Kim. A new resin matrix for dental composite having low volumetric shrinkage. J. Biomed. Materi. Res. 2004; 70B: 82–90.
33. J. W. Kim, L. U. Kim, C. K. Kim, B. H. Cho, O. Y. Kim. Characteristics of novel dental composites containing 2,2-bis[4-(2- methoxy-3-methacryloyloxy propoxy) phenyl]propane as a base resin. Biomacromolecules 2006; 7: 154-160.
34. J.D. Wright, N.A. Sommerdijk. Sol-gel materials: chemistry and applications. Taylor & Francis Books Ltd. 2003: 1-8.
35. 蔣孝澈.溶凝膠製作與應用專輯. 化工1999; 46: 12.
36. L.L. Hench, J. K. West. The sol gel process. Chem. Rev. 1990; 90: 32-72.
37. E. Matijević. Ralph K. Iler Award: uniform inorganic colloid dispersion, achievements and challenges. Langmuir 1994; 10: 8-16.
38. W. Stöber, A. Fink, E. Bohn. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968; 26: 62-69.
39. J.D. Wright, N.A. Sommerdijk. Sol-gel materials: chemistry and applications. Taylor & Francis Books Ltd. 2003: 15-23.
40. C. J. Brinker, G. W. Scherer. Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc. 1990: 123.
41. C. J. Brinker, G. W. Scherer. Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc. 1990:109.
42. C. J. Brinker, G. W. Scherer. Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc. 1990: 102.
43. U. Jeong, Y. Wang, M. Ibisate, Y. Xia. Some new developments in the synthesis, functionalization, and utilization of monodisperse colloidal spheres. Adv. Funct. Mater. 2005; 15: 1907-1921.
44. C. J. Brinker, G. W. Scherer. Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc. 1990: 277-284.
45. P. Judeinstein, C. Sanchez. Hybrid organic-inorganic materials: a land of multidisciplinarity. J. Mater. Chem. 1996; 6: 511-525.
46. 詹佳樺. 溶膠-凝膠法製備聚甲基丙烯酸甲酯 / 二氧化矽混成體之研究. 國立中央大學化學工程研究所碩士論文 2001.
47. 林進益. 溶膠-凝膠/有機-無機混成高分子材料發展趨勢. 化工資訊月刊1999; 13: 7-16.
48. C. Sanchez, B. Julián, P. Belleville, M. Popall. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 2005; 15: 3559-3592.
49. N. Bialas, H. Höcker, M. Marschner, W. Ritter. 13C NMR studies on the relative reactivity of isocyanate groups of isophorone diisocyanate isomers. Macromol. Chem. Phys. 2003; 191: 1843-1852.
50. E.K. Viljanen, L.V. Lassila, M. Skrifvars, P.K. Vallittu. Degree of conversion and flexural properties of a dendrimer/methyl methacrylate copolymer: design of experiments and statistical scerrning. Dent. Mater. 2005; 21: 172-177.
51. R.L. Sakaguchi, A. Versluis, W.H. Douglas. Analysis of strain gage method for measurement of post-gel shrinkage in resin composites. Dent. Mater. 1997; 13: 233-239.
52. S. Carraher 著, 薛敬和 譯. 高分子化學. 高立出版社. 2000; 3rd ed.: p.38.
53. R.E.L. Palacio, C.A.d.C. Zavaglia. The monomeric formulation optimization of dental composite: mechanical and kinetic studied. Artif. Organs 2003; 27: 419-423.
54. K.S. Chou, C.C. Chen. Preparation and charaterization of monodispersed silica colloids. Adv. in Tech. of Mat. and Mat. Proc. J. (ATM) 2003; 5-1: 31-35.
55. B.D. Bowen, N. Epstein. Production of monodisperse colloidal silica spheres: effect of temperature. J. Colloid Interface Sci. 1987; 118: 290-293.
56. D. Nagao, E. Mine, Y. Kobayashi, M. Konno. Synthesis of silica particles in the hydrolysis of tetraethyl orthosilicate with amine catalysts. J. Chem. Eng. Jpn. 2004; 37: 905-907.
57. C. J. Brinker, G. W. Scherer. Sol-gel Science: the physics and chemistry of sol-gel processing. Academic Press, Inc. 1990: 270-275.
58. J. D. Cho, H.T. Ju, J.W. Hong. Photocuring kinetics of UV-initiated free-radical photo-polymerizations with and without silica nonoparticles. J. Polym. Sci., A, Polym. Chem. 2005; 43: 658-670.
59. 胡德. 高分子物理與機械性質 (下). 國立編譯館 1990; 1st ed.: 87-89.
60. R. W. Phillips 著, 高資彬, 翁秀和 譯. 牙科材料學. 合記出版社1977; 1st ed.: p.34.
61. FDA. Dental composites pre-market notification: Guidance 1 for industry and FDA staff. FDA 1998; 11: 27.
62. S. Carraher 著, 薛敬和 譯. 高分子化學. 高立出版社2000 ; 3rd ed.: p.55.
63. M. Atai, D.C. Watts, Z. Atai. Shrinkage strain-rates of dental resin-monomer and composite systems. Biomaterials 2005; 26: 5010-5020.
64. J. Manhart, K.H. Kunzelmann, H.Y. Chen, R. Hickel. Mechanical properties of new composite restorative materials. J. Biomed. Materi. Res. 2 000; 53: 353-361.
65. Operation instructions of Palfique Estelite. Tokuyama Dental Corporation 2003; 2nd ed.
66. Instructions for use 3MTM FiltekTM P60 Posterior Restorative. 3M Dental Products Laboratory 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33936-
dc.description.abstract本研究利用二異氰酸鹽(diisocyanate)和甲基丙烯酸-2-羥基乙酯(2-hydroxyethyl methacrylate, HEMA)以2:1當量比反應,形成前驅物,以前驅物中剩下一當量的氰酸酯基與環氧丙烯酸酯(epoxy acrylate, EA)側鏈上的氫氧基反應,形成新多官能基壓克力單體。所選用的二異氰酸鹽為2,4-二異氰酸甲苯(toluene 2,4-diisocyanate, TDI),六亞甲基二異氰酸鹽(1,6-diisocyanatohexane, HDI)和二異氰酸異佛爾酮(isophorone diisocyanate, IPDI)。藉由調整三種EA側鏈上的氫氧基和二異氰酸鹽的氰酸酯基莫耳比例,可得三種不同官能度的新多官能基壓克力單體。此親核反應會使得新單體的分子量變大,且產生較強的分子間氫鍵,因此黏度會增加。利用三丙稀乙二醇雙丙稀酸酯(tripropylene glycol diacrylate, TPGDA)的不同添加量可調整樹脂基質(matrix)的黏度。此新多官能基壓克力單體照光聚合後可形成交聯網狀結構,因此其聚合收縮應變量(polymerization shrinkage)較小。
在無機填料部份,本研究利用溶膠-凝膠法能有效合成均一粒徑二氧化矽膠體,並藉由調整以下之參數可得不同之粒徑大小:(1)反應溫度、(2)氨水濃度、(3)水對四乙氧基矽烷(tetraethoxysilane, TEOS)的莫耳比例(R值)和(4)四乙氧基矽烷的濃度。本研究利用此方法所合成之均一粒徑二氧化矽膠體的平均粒徑介於0.082到 1.16微米(μm)。甲基丙烯酸酯基三甲氧基矽(3-(trimethoxy silyl) propyl methacrylate, MSMA)可成功地對二氧化矽膠體表面進行改質,使其表面帶有壓克力官能基,以增進有機和無機相介面的相容性。傅立葉轉換紅外線光譜儀(FT-IR)、掃描式電子顯微鏡(SEM)和動態雷射光散射粒徑儀(DLS)為此判斷的依據。
以新多官能基壓克力單體、TPGDA、DL-樟腦醌(DL-camphoroquinone, CQ)、三級胺化合物以及市售之燻矽(fumed silica)或改質之二氧化矽膠體組成一可操作之均勻糊狀物,經可見光(λ=400-520nm)照射30秒後,即得產物。測試由新多官能基壓克力單體組成的複合或混成材料之聚合收縮程度(polymerization shrinkage)、硬度(hardness)、膨潤比(swelling ratio)和丙酮溶解度(acetone solubility),以bis-GMA(bisphenol A glycerolate dimethacrylate)為樹脂基質之材料為對照組,並與已上市產品做一比較,藉此評估新多官能基壓克力單體和改質之二氧化矽膠體應用於牙科填補材料之可行性。在本研究中,燻矽的最大添加量為50wt%,而改質之二氧化矽膠體可添加至70wt%,因此使得材料的硬度大幅提升。改質之二氧化矽膠體和新多官能基壓克力單體所組成的混成材料之最大硬度為61.1Hv,可達商品化產品標準(Estilite的硬度為53.6Hv),其聚合收縮程度比以bis-GMA為樹脂基質的混成材料減少4倍,且小於已上市產品Estilite 10倍。因此,多官能基壓克力單體和改質之二氧化矽膠體有應用於牙科修復材料之潛力。
zh_TW
dc.description.abstractThe novel multifunctional methacrylates were prepared by the reaction between the hydroxyl groups of the epoxy-acrylate resin (EA) and the isocyanate groups of the diisocyanate, such as toluene-2, 4-diisocyanate (TDI), 1,6-Diisocyanatohexane (HDI) or isophorone diisocyanate (IPDI) , which were pre-reacted with 2-hydroxyethyl- methacrylate (HEMA) with 2:1 equivalent ratio, and utilized as the dental monomers. By varying the molar ratios between the hydroxyl groups of EA and the isocyanate groups of diisocyanate, the methacrylaes with three types of different functionalities were obtained. As the reaction proceeded, the reaction underwent the nucleophilic addition and the stronger hydrogen bonding raised, resulted in the increase of molecular weights and viscosity. By adding the different amounts of tripropylene glycol diacrylate (TPGDA), the viscosity of the resin matrix could be reduced and adjusted.
The mono-dispersed silica spheres were synthesized by the sol-gel process. By varying the reaction temperature, the concentration of ammonium hydroxide, the molar ratio of water to TEOS (R value), and the concentration of tetraethoxysilane (TEOS), the size of mono-dispersed silica spheres could be controlled. In this study, the size of silica spheres ranged from 0.082 to 1.16μm. The silica spheres were successfully modified by 3-(trimethoxy silyl) propyl methacrylate (MSMA), and the acrylate functional groups were chemically bonded to the surface of silica spheres, in order to enhance the compatibility of organic and inorganic interface. FT-IR, DLS and SEM were employed to characterize the modification of the silica spheres.
The pastes were composed of the novel multifunctional methacrylate resin, TPGDA, DL-camphoroquinone (CQ), the compound of tertiary amine, and the modified silica spheres or fumed silica (digussa®202). After visible light curing (400-520nm) in 30sec, the hybrids or composites were formed. The shrinkage, hardness, swelling ratio and the acetone solubility of the hybrids or composites obtained from the multimethacrylate resins were analyzed. Those data obtained from the analysis of multimethacrylate-containing materials were compared with the control 2,2-bis[4-(2’-hydroxy-3’-methacryloyloxypropoxy)phenyl] propane (bis-GMA) based materials and the commercialized products in order to evaluate the application of the multimethacrylates as the dental resins and the modified mono-dispersed silica spheres as dental fillers. In this study, the maximum loading of fumed silica was 50wt%, but the modified mono-dispersed silica could reach 70wt%. Hence, the materials composed of modified mono-dispersed silica others than fumed silica could obtain the higher hardness. The maximum hardness of the hybrids composed of the modified mono-dispersed silica spheres and the multifunctional methacrylates was 61.1Hv which was higher than the Estilite (53.6Hv). And its shrinkage was much lower in comparison with the bis-GMA hybrids (lowered by about 4 times) and the commercialized products (lowered by about 10 times). Therefore, it is the potential dental restorative material.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:49:27Z (GMT). No. of bitstreams: 1
ntu-95-R93524011-1.pdf: 3028858 bytes, checksum: 9b2602b89ef4889385d2618624976f88 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要I
AbstractIII
目錄V
表索引X
圖索引XIII
代號解釋XX
第一章 緒論1
1-1 前言1
1-2 牙科材料發展之簡要歷史1
1-3 牙科修復材料所需具備條件3
1-4 研究目的4
第二章 文獻回顧與理論基礎6
2-1 牙科修復材料的分類與介紹6
2-2 光可硬化樹脂之聚合機制11
2-2-1 自由基鏈鎖反應機制11
2-2-2 光聚合反應14
2-2-3 減少聚合收縮之光可硬化樹脂16
2-3 溶膠-凝膠法19
2-3-1 溶膠-凝膠法簡介19
2-3-2 水解反應21
2-3-3 縮合反應22
2-3-4 均一粒徑二氧化矽粒子23
2-4 有機/無機混成(hybrid)材料25
2-4-1 以溶膠-凝膠法製備有機/無機混成(hybrid)材料之方26
2-4-2 溶膠-凝膠法製備有機/無機混成(hybrid)材料的優缺點27
第三章 實驗方法與原理28
3-1 實驗藥品28
3-2 實驗儀器32
3-3 實驗流程與步驟35
3-3-1 樹脂之製備35
3-3-1-1 TDI系統樹脂(TDI/HEMA/EA)之合成35
3-3-1-2 HDI系統樹脂(HDI/HEMA/EA)之合成36
3-3-1-3 IPDI系統樹脂(IPDI/HEMA/EA)之合成37
3-3-2 二氧化矽膠體粒子之製備37
3-3-3 牙科修復材料之製備38
3-4 材料之分析與測試38
3-4-1 傅立葉紅外線光譜(FT-IR)分析測試38
3-4-2 凝膠滲透色層分析儀(GPC)分析測試40
3-4-3 黏度(viscosity)分析測試40
3-4-4 聚合收縮(polymerization shrinkage)分析測試41
3-4-5 維克氏硬度(Vickers hardness tester)分析測試41
3-4-6 膨潤比(swelling ratio)與丙酮溶解度(acetone solubility)分析測試42
3-4-7 熱重損失分析儀( TGA )分析測試42
3-4-8 動態光散射雷射粒徑儀(DLS)分析測試43
3-4-9 掃瞄式電子顯微鏡(SEM)分析測試43
第四章 結果與討論44
4-1 TDI 系統樹脂(TDI/HEMA/EA)之合成探討及其與燻矽(fumed silica)混鍊後之複合樹脂性質討論44
4-1-1 傅立葉紅外線光譜(FT-IR)分析44
4-1-2 凝膠滲透色層分析(GPC)44
4-1-3 黏度(viscosity)分析45
4-1-4 光起始劑與聚合程度評估分析46
4-1-5 硬度(hardness)測試分析47
4-1-6 聚合收縮(polymerization shrinkage)測試分析48
4-2 均一粒徑二氧化矽小球之合成與討論49
4-3 TDI系統樹脂(TDI/HEMA/EA)與自行合成之二氧化矽小球之混成材料性質討論51
4-3-1 NtH2-80與不同粒徑之二氧化矽小球之混成材料性質討論51
4-3-1-1 外觀分析52
4-3-1-2 熱重損失(TGA)分析53
4-3-1-3 膨潤比(swelling ratio)及丙酮溶解度(acetone solubility)測試分析54
4-3-1-4 硬度(hardness)測試分析55
4-3-1-5 聚合收縮(polymerization shrinkage)測試分析56
4-3-2 NtH2-80與不同改質程度二氧化矽小球混成材料性質討論57
4-3-2-1 熱重損失(TGA)分析57
4-3-2-2 膨潤比(swelling ratio)及丙酮溶解度(acetone solubility)測試分析57
4-3-2-3 硬度(hardness)測試分析58
4-3-2-4 聚合收縮(polymerization shrinkage)測試分析58
4-3-3 TDI系統樹脂(TDI/HEMA/EA)與S3-1/4之混成材料性質討論58
4-3-3-1 膨潤比(swelling ratio)及丙酮溶解度(acetone solubility)測試分析58
4-3-3-2 硬度(hardness)測試分析59
4-3-3-3 聚合收縮(polymerization shrinkage)測試分析61
4-4 HDI系統樹脂(HDI/HEMA/EA)之合成探討及其與S3-1/4之混成材料性質討論62
4-4-1 傅立葉紅外線光譜(FT-IR)分析62
4-4-2 凝膠滲透色層分析(GPC)63
4-4-3 黏度(viscosity)分析64
4-4-4 硬度(hardness)測試分析64
4-4-5 膨潤比(swelling ratio)及丙酮溶解度(acetone solubility)測試分析65
4-4-6 聚合收縮(polymerization shrinkage)測試分析66
4-5 IPDI系統樹脂(IPDI/HEMA/EA)之合成探討及其與S3-1/4之混成材料性質討論69
4-5-1 傅立葉紅外線光譜(FT-IR)分析69
4-5-2 凝膠滲透色層分析(GPC) 70
4-5-3 黏度(viscosity)分析70
4-5-4 硬度(hardness)測試分析70
4-5-5 膨潤比(swelling ratio)及丙酮溶解度(acetone solubility)測試分析72
4-5-6 聚合收縮(polymerization shrinkage)測試分析73
4-6 三大系統之綜合討論74
4-6-1 樹脂黏度(viscosity)分析75
4-6-2 膨潤比(swelling ratio)及丙酮溶解度(acetone solubility)測試分析75
4-6-3 熱重損失(TGA)分析76
4-6-4 硬度(hardness)測試分析76
4-6-5 聚合收縮(polymerization shrinkage)測試分析77
第五章 結論78
第六章 參考文獻81
附錄87
dc.language.isozh-TW
dc.subject牙科修復zh_TW
dc.subject多官能基zh_TW
dc.subject壓克力zh_TW
dc.subject光聚合zh_TW
dc.subject均一粒徑二氧化矽zh_TW
dc.subject混成zh_TW
dc.subject聚合收縮zh_TW
dc.subjectshrinkage.en
dc.subjecthybriden
dc.subjectmono-dispersed silicaen
dc.subjectrestorativeen
dc.subjectphotocurableen
dc.subjectacrylateen
dc.subjectmultifunctionalen
dc.subjectdentalen
dc.title應用於牙科修復之可見光聚合新多官能基壓克力單體/二氧化矽混成材料zh_TW
dc.titleNovel Multifunctional Methacrylate Monomers and Their Visible-light Cured Polymer/SiO2 Hybrids as Dental Restorative Materialsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee韓錦鈴(Jin-Lin Han),林俊彬(Chun-Pin Lin),王怡仁(Yen-Zen Wang)
dc.subject.keyword多官能基,壓克力,光聚合,均一粒徑二氧化矽,混成,牙科修復,聚合收縮,zh_TW
dc.subject.keywordmultifunctional,acrylate,photocurable,mono-dispersed silica,hybrid,restorative,dental,shrinkage.,en
dc.relation.page181
dc.rights.note有償授權
dc.date.accepted2006-07-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
2.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved