Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33925
標題: 有限亞丁模上的龐曲爾根分解
Pontryagin product on Artinian modules
作者: Che-Sheng Su
蘇哲聖
指導教授: 陳榮凱(Jungkai Alfred Chen)
關鍵字: 龐區爾根,富利葉,
Pontryagin,Mukai,Fourier,Pontryagin product,unipotent vector bundle,decomposition on module,
出版年 : 2006
學位: 碩士
摘要: We want to study the structure of vector bundles after tenser product. But by cite{mukai}'s result, to investigate tensor product of vector bundles is equivalent to investigate Pontryagin product on the corresponding objects. And if the vector bundles are unipotent, cite{mukai} presents the equivalence between {Unipotent vector
bundles on X} and {Coherent sheaves on hat X supported by
hat0}={Artinian R'-modules}, where R' is a local ring. So
we are going to study modules over Artinian local ring in order to know the structure on unipotent vector bundles. By Krull-Schmidt Theorem (cf. cite{jacobson} p115), , we know the decomposition is unique up to isomorphism.
We first restrict our attention on the case of one dimensional local ring. In this case, let F be a field, R:=F[x], R':=R_{(x)} be the one dimensional local ring. We know that the indecomposable Artinian R'-module is of the form F[x]/(x^n) i.e. the decomposition of Artinian R'-module is the direct sum of this form. In particular, the decomposition of Pontryagin product is the direct sum of this form. We will see the decomposition in exact form, and the result is compatible with cite{atiyah}'s result in
decomposition of tensor product of indecomposable unipotent vector bundles via the Fourier-Mukai transform.
Secondly, we want to know the two dimensional local ring case. Let R=F[t_1,t_2], R'=R_{(t_1,t_2)}. In this case, indecomposable Artinian R'-modules could be subtle. We don't even understand in general how to decide if a R'-module is indecomposable. In order to know this structure more clearly, We first transform this problem into decomposition of Artinian R-module of the form M/N with M
a finitely generated free R-module and I_{Max}^cMsubset N for some (large) integer c, where I_{Max}=(t_1,t_2) is the maximal ideal of R.
To decompose R-module of the form M/N, we have the following
result:
N is `strongly' decomposable (see definition
ef{st}), iff M/N is decomposable.
So we transform our problem into `strongly' decomposition of N who satisfy I_{Max}^cMsubset N for some c. To `strongly' decompose N is equivalent to decompose a vector field M_0=V_1oplus V_2 s.t. N=(Ncap RV_1)oplus (Ncap RV_2) (see notation ef{noa}). But for some given N, we still don't know how to decompose M_0 in general, only some easy cases can be handled.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33925
全文授權: 有償授權
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
230.73 kBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved