Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33917
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬(Chii-Wann Lin)
dc.contributor.authorChing-Ting LINen
dc.contributor.author林敬庭zh_TW
dc.date.accessioned2021-06-13T05:48:58Z-
dc.date.available2008-07-28
dc.date.copyright2006-07-28
dc.date.issued2006
dc.date.submitted2006-07-07
dc.identifier.citation1. Pluta, M., Advanced Light Microscopy- Principles and Basic Properties. Vol. 1. 1988: Elsevier.
2. Yuval Garini, Bart J Vermole, and I.T. Young, From micro to nano: recent advances in high-resolution microscopy. Current Opinion in Biotechnology, 2005. 16: p. 3-12.
3. Pluta, M., Advanced Light Microscopy- Specialized Methods. Vol. 2. 1989.
4. Barry R. Masters, Peter T. C. So, and Enrico Gratton, Fluorescent and Luminescent Probes
Ch13, Multiphoton Excitation Microscopy and Spectroscopy of Cells, Tissues and Human Skin in Vivo. 2 ed. 414-432.
5. Laurent Moreaux, et al., Coherent Scattering in Multi-Harmonic Light Microscopy. Biophysical Journal, 2001. 80: p. 1568-1574.
6. Chi-Kuang Sun, et al., Higher Harmonic Generation Microscopy for Developmental Biology. Journal of Structural Biology, 2004. 147: p. 19-30.
7. Shi-Wei Chu, et al., Studies of χ(2)/χ(3) Tensors in Submicron-Scaled Bio-Tissues by Polarization Harmonics Optical Microscopy. Biophysical Journal, 2004. 86: p. 3914-3922.
8. Rebecca M. Williams, Warren R. Zipfel, and Watt W. Webb, Interpreting Second-Harmonic Generation Images of Collagen I fibrils. Biophysical Journal, 2005. 88: p. 1377-1386.
9. William Mohler, Andrew C. Millard, and P.J. Campagnola, Second Harmonic Generation Imaging of Endogenous Structural Proteins. Methods, 2003. 29: p. 97-109.
10. Mertz, J., Nonlinear Microscopy: New Techniques and Applications. Current Opinion in Neurobiology, 2004. 14: p. 610-616.
11. Winfried Denk, James H. Strickler, and Watt W. Webb, Two-photon laser scanning fluorescence microscopy. Science, 1990. 248(4951): p. 73-76.
12. Konig, K., Multiphoton Microscopy in Life Sciences. Journal of Microscopy, 2000. 200: p. 83-104.
13. Rebecca M. Williams, Warren R. Zipfel, and Watt W. Webb, Multiphoton Microscopyin Biological Research. Current Opinion in Chemical Biology, 2001. 5: p. 603-608.
14. Peter T. C. So, et al., Two-Photon Excitation Fluorescence Microscopy. Annual Reviews Biomedical Engineering, 2000. 02: p. 399-429.
15. Shaohui Huang, Ahmed A. Heikal, and Watt W. Webb, Two-photon fluorescence spectroscopy and microscopy of NAD(P)H nad flavoprotein. Biophysical Journal, 2002. 82: p. 2811-2825.
16. Clamme, J.P., G. Krishnamoorthy, and Y. Mely, Intracellular dynamics of the gene delivery vehicle polyethylenimine during transfection: investigation by two-photon fluorescence correlation spectroscopy. Biochim Biophys Acta, 2003. 1617(1-2): p. 52-61.
17. Eleanor P.W. Kable and KAlexandra K. Kiemer, Non-invasive live-cell measurement of changes in macrophage NAD(P)H by two-photon microscopy. Immunology Letters, 2005. 96: p. 33-38.
18. Marc van Zandvoort, et al., Two-Photon Microscopy for Imaging of the (Atherosclerotic) Vascular Wall:A Proof of Concept Study. Journal of Vascular Research, 2003. 41: p. 54-63.
19. V.N. Dedov, G.C. Cox, and DB.D. Roufogalis, Visualisation of mitochondria in living neurons with single- and two-photon fluorescence laser microscopy. Micron, 2001. 32: p. 653-660.
20. Paras N, P., Introduction to Biophotonics. 2003: Wiley-Interscience.
21. Andreas Volkmer, et al., One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophysical Journal, 2000. 78: p. 1589-1598.
22. Borys Kierdaszuk, et al., Fluorescence of reduced nicotinamides using one- and two-photon excitation. Biophysical Chemistry, 1996. 62: p. 1-13.
23. Thomas D. Wang and G. Triadafilopoulos, Autofluorescence Imaging: Have We Finally Seen the Light. Gastrointestinal Endoscopy, 2005. 61(6): p. 686-688.
24. David W. Piston and S.M. Knobel, Real-Time Analysis of Glucose Metabolism by Microscopy. Trends Endocrinol Metab, 1999. 10(10): p. 413-417.
25. M. Bechem, et al., Novel Hyperpolarizable and Florescent Dyes in Lipid Membranes: Studying Membrane Potentials Using Nonlinear optical and Fluorescence. Electrochimica Acta, 2003. 48: p. 3387-3393.
26. Daniel A. Domback, et al., Uniform Polarity Microtubule Assemblies Imaged in Native Brain Tissue by Second-Harmonic Generation Microscopy. Proceedings of the National Academy of Sciences-Biophysics, 2003. 100(12): p. 7081-7086.
27. Boyd, R.W., Nonlinear Optics. 2 ed. 2003: Elsevier Science.
28. Note of lecture 'Modern Biological Optical Microscopy',NTU, Taiwan, lectured by Dr. ChenYaun Dong.
29. Hecht, E., Optics. 4 ed. 2002: Addison Wedley.
30. Bahaa E. A. Saleh and Mlcin Carl Teich, Fundamentals of Photonics. 1991: John Wiley & Sons.
31. Veronique Le Floc'h, et al., Monitoring of Orientation in Molecular Ensembles by Polarization Sensitive Nonlinear Microscopy. Journal of Physics Chemistry B, 2003(107): p. 12403-12410.
32. Sophie Brasselet, et al., In Situ Diagnostics of the Crystalline Nature of Single Organic Nanocrystals by Nonlinear Microscopy. Physical Review Letters, 2004. 92(20): p. 207401-1-207401-4.
33. John C. Pickup, et al., Fluorescence -Based Glucose Sensors. Biosensors and Bioelectronics, 2005. 20: p. 2555-2565.
34. Paul J. Campagnola, et al., Three-Dimensional High-Resolution second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues. Biophysical Journal, 2002. 81: p. 493-508.
35. Lakowicz, J.R., Principles of Fluorescence Spectroscopy. 2 ed: Kluwer Academic/ Plenum Publishers.
36. Xiaoyuan Deng, et al., Second-Harmonic Generation from Biological Tissues: Effect of Excitation Wavelength. Scanning, 2002. 24: p. 175-178.
37. O.F.J. Noordman and N.F. van Hulst, Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities β of fluorescent molecules. Chamical Physics Letters, 1996. 253: p. 145-150.
38. Scott, J., Pathophysiology and biochemistry of cardiovascular disease. Current Opinion in Genetics & Development, 2004. 14: p. 271-279.
39. Mitsuhiro Yokoyama, Oxidant stress and atherosclerosis. Current Opinion in Pharmacology, 2004. 4: p. 110-115.
40. Silvia Stella Barbieri, et al., R eactive oxygen species mediate cyclooxygenase-2 induction during monocyte to macrophage differentiation: critical role of NADPH oxidase. Cardiovascular Research, 2003. 60: p.187-197.
41. Borys Kierdaszuk, et al., Fluorescence of Reduced Nicotinamides Using Oneand Two-photon exication. Biophysical Chemistry, 1996. 62: p. 1-13.
42. MAREYUKI TAKAHASHI, MIYAKO SHIBATA, and ETSUO NIKI,
Estimation of lipid peroxidation of live cells using a fluorescent probediphenyl-1-pyrenylphosphine. Free Radical Biology & Medicine, 2001. 31(2):p. 164-174.
43. YUKO OKIMOTO, et al., A novel method of following oxidation of low-density lipoprotein using a sensitive fluorescent probe--diphenyl-1-pyrenylphosphine. Free Radical Biology & Medicine, 2003.35(6): p. 576-585.
44. Robert K. Murray, et al., Harper's Illustrated Biochemistry. International edition ed. 2003: The McGraw Hill Company.
45. Babior, B.M., J.D. Lambeth, and W. Nauseef, The neutrophil NADPH oxidase.Arch Biochem Biophys, 2002. 397(2): p. 342-4.
46. Kai Chen, et al., Beyond LDL Oxidation: ROS in Vascular Signal Transduction. Free Radical Biology & Medicine, 2003. 35(2): p. 117-132.
47. Guy . Chisolm III, et al., The Oxidation of ipoproteins by Monocytes-Macrophages. The Journal of Biological Chemistry, 1999. 274(37):p. 25959-25962.
48. Toshiyo Sonta, et al., Evidence for Contribution of Vascular NAD(P)H Oxidase to Increased Oxidative Stress in Animal Models of Diabetes and Obesity. Free Radical Biology & Medicine, 2004. 37(1): p. 115-123.
49. Warren CW Chan, et al., Luminescent quantum dots for multiplexed biological detection and imaging. Current Opinion in Biotechology, 2002. 13: p. 40-46.
50. Mihrimah Ozkan, Quantum dots and other nanoparticles: what can they offer to drug discovery? Drug Discovery Today, 2004. 9(24): p. 1065-1071.
51. Rachel W. Martin and K.W. Zilm, Preparation of protein nanocrystals and their characterixation by solid state NMR. Journal of Magnetic Resonance, 2003. 165: p. 162-174.
52. Wolfgang Fischle, Yanming Wang, and C David Allis, Histone and chromatin cross-talk. Current Opinion in Cell Biology, 2003. 15: p. 172-183.
53. Z. Darzynkiewicz, et al., Nuclear chromatin changes during erythroid differentiation of friend virus induced leukemic cells. Expreimental Cell Research, 1976. 99(2): p. 301-309.
54. Robin L. Davies, Stelia Fuhrer-Krusi, and R.S. Kucherlapati, Modulation of transfected gene expression mediated by changes in chromatin structure. Cell, 1982. 31(3, PART 2): p. 521-529.
55. Bonifer, C., Long-distance chromatin mechanisms contralling tissue-specific gene locus activation. Gene, 1999. 238: p. 277-289.
56. Joe S. Mymryk, et al., Analysis of chromatin structure in vivo. Methods: a companion of methods in enzymology, 1997. 12: p. 105-114.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33917-
dc.description.abstract雙光子顯微術因其優異的特性—包含自發性的光學斷層、較低的光漂白與光損害、較佳的影像對比度以及較長的穿透距離,近年來在生醫領域上,吸引不少學者的高度興趣。在此研究中,藉由觀測以780 nm波長激發、來自巨噬細胞 J774A.1的NAD(P)H自體螢光,得以瞭解螢光強度與細胞的代謝作用之關係。到目前為止,不僅證實了我們所觀測到的訊號的確來自細胞的代謝作用,同時指出LDL 的氧化對細胞所造成的傷害大於ox-LDL。
我們亦觀察了一些較簡單的系統以作為實驗模型,如蛋白質晶體及以YOYO-1染色的DNA纖維。將蛋白質晶體所發出的螢光,以極化分光鏡分為兩垂直方向之光束,並比較它們對雷射極化角度的強度變化,即可判斷我們所觀察的是否為單一晶體形式。此外,亦觀察到來自DNA纖維、因其結構之不對稱性而產生的二倍頻訊號。更進一步地,藉由分析螢光強度對雷射極化之,我們通常能夠分辨DNA纖維是較為延展伸長的,或較為聚集在一起。以上實驗說明了未來以雙光子顯微鏡分析染色質結構的可能性。
實驗結果闡明了雙光子顯微鏡是一有潛力的工具,可用於研究細胞之代謝作用,或可作為評價並量化生物分子之非線性光學反應之儀器。
zh_TW
dc.description.abstractTwo-photon microscopy has attracted high interests on investigation of biomedicine recently, because of its several outstanding characteristics, including intrinsic optical section, lower photo-bleaching and photo damaging, higher contrast and longer penetrating distance. In this research, NAD(P)H autofluorescence of macrophages J774A.1 was observed by 780nm two-photon excitation, to understand the relationship between fluorescence intensity and cells’ metabolisms. So far, we have not only demonstrated that what we observed was from metabolism of cells, but also indicated that LDL oxidation causes more damage than ox-LDL does on macrophages.
Simpler systems used as models, such as protein crystals and YOYO-1 stained DNA fibers, were also observed. By separating fluorescence emitted from a protein crystal into two perpendicular polarization directions, and comparing their intensity response dependence to laser polarization, one can tell if what observed is a pure crystalline form. Besides, slight intrinsic Second Harmonic Generation (SHG) signal were collected from DNA fibers, due to the chirality of their structure. Moreover, we can usually tell DNA fibers are more extended or form aggregates, by analyzing the polarization dependence of fluorescence intensity. The above experiments indicate the possibility to analyze chromatin structure using a two-photon microscope in the future.
The experimental results bring out that two-photon microscopy is a potential tool to investigate metabolism of cells, and it can also be used as an adequate instrument to evaluate and to quantify the nonlinear responses from bio-molecules.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:48:58Z (GMT). No. of bitstreams: 1
ntu-95-R92548057-1.pdf: 2838731 bytes, checksum: 7d8b42deef5d163716acbc65fe754067 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsCHAPTER 1— INTRODUCTION 1
1.1 Review and Basic Principle of Optical Microscopy 1
1.2 Brief Review of Two-Photon Microscopy 5
1.2.1 History of Second Harmonic Generation Microscopy 5
1.2.2 History of Two-Photon Excitation Fluorescence (TPEF) Microscopy 6
1.3 Prospect of Two-Photon Microscopy 7
CHAPTER 2— PRINCIPLES OF TWO-PHOTON EXCITATION MICROSCOPY 10
2.1 Physics basis of TPEF microscopy 10
2.2 Optical Properties of TPEF microscopy 12
2.3 Physics basis of SHG microscopy 14
2.4 Optical Properties of SHG microscopy 16
2.5 Spectral Properties of TPEF and SHG 17
2.6 Intensity of TPEF and SHG 19
2.7 Description of a TPE microsocope Set Up 21
2.7.1 Light source 21
2.7.2 Scanning System and Beam Expander 22
2.7.3 Detecting System 23
CHAPTER 3—AUTOFLUORESCENCE AND METABOLISM OF MACROPHAGES 25
3.1 Introduction 25
3.2 TPE Microscope System in Nano Center, National Taiwan University 27
3.3 Materials and Methods 29
3.3.1 Cell Culture and Samples Preparation 29
3.3.2 Coating Condition of Culture Surfaces 30
3.3.3 Intensity Dependence of Laser Power and Glucose Concentration 30
3.3.4 Time Sequence Observation 30
3.3.5 Influence of Potassium Ions on Macrophages 30
3.3.6 Influences of Nature and Oxidized Low-Density Lipoprotein (LDL and ox-LDL) on Macrophages 31
3.4 Results and Discussion 31
3.4.1 Coating Condition of Culture Surface 31
3.4.2 Intensity Dependence of Laser Power and Glucose Concentration 33
3.4.3 Time Sequence Observation 35
3.4.4 Influence of Potassium Ions on Macrophages 36
3.4.5 Influences of Nature and Oxidized Low-Density Lipoprotein (LDL and ox-LDL) on Macrophages 37
CHAPTER 4— INTRINSIC NONLINEAR RESPONSE FROM BIO-MOLECULAR MODELS 41
4.1 Introduction 41
4.1.1 Protein Crystals 41
4.1.2 DNA Fibers and Chromatin 43
4.2 TPE Microscope System in Ecole Normale Supérieure (ENS) Cachan, France 44
4.2.1 Detection System 44
4.2.2 Scanning Method 45
4.2.3 Transmission Direction Detection Set Up 46
4.3 Materials and Methods 47
4.3.1 Calibration of Transmission Direction Detection 47
4.3.2 Observation of Protein Crystals 47
4.3.3 Observation of DNA Combing Fibers 48
4.3.3.1 Demonstration of SHG from DNA Combing Fibers 48
4.3.3.2 Analysis of TPEF from DNA Combing Fibers 48
4.3.3.3 Comparison of DNA Combing Fibers by TPEF and DIC Microscopes 49
4.3.4 Observation of DNA Manual Fibers 49
4.4 Results and Discussion 49
4.4.1 Calibration of Transmission Direction Detection 49
4.4.2 Observation of Protein Crystals 51
4.4.3 Observation of DNA Combing Fibers 52
4.4.3.1 Demonstration of SHG from DNA Combing Fibers 52
4.4.3.2 Analysis of TPEF from DNA Combing Fibers 53
4.4.3.3 Analysis of SHG from DNA Combing Fibers 60
4.4.3.4 Comparison of DNA Combing Fibers by TPEF and DIC Microscopes 62
4.4.4 Observation of DNA Manual Fibers 65
CHAPTER 5— CONCLUSION AND PROSPECTIVE 68
REFERENCE 71
APPENDIX 75
dc.language.isoen
dc.subject巨嗜細胞zh_TW
dc.subject低密度脂蛋白zh_TW
dc.subject雙光子顯微術zh_TW
dc.subject去氧核糖核酸zh_TW
dc.subject蛋白質晶體zh_TW
dc.subjectNAD(P)Hzh_TW
dc.subject自體螢光zh_TW
dc.subjectTwo-photon microscopyen
dc.subjectDNAen
dc.subjectprotein crystalen
dc.subjectNAD(P)Hen
dc.subjectautofluorescenceen
dc.subjectlow-density lipoproteinen
dc.subjectmacrophageen
dc.title雙光子激發顯微術於生醫研究之應用zh_TW
dc.titleApplications of Two-Photon Excitation Microscopy on Biomedicineen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor蘇菲‧巴赫瑟雷(Sophie Brasselet)
dc.contributor.oralexamcommittee董成淵(Chen-Yaun Dong),吳造中(Chau-Chung WU),李世光(Chih-Kuang LEE)
dc.subject.keyword雙光子顯微術,巨嗜細胞,低密度脂蛋白,自體螢光,NAD(P)H,蛋白質晶體,去氧核糖核酸,zh_TW
dc.subject.keywordTwo-photon microscopy,macrophage,low-density lipoprotein,autofluorescence,NAD(P)H,protein crystal,DNA,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2006-07-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
2.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved