Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33885
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭仁傑
dc.contributor.authorHsien-Yung Linen
dc.contributor.author林先詠zh_TW
dc.date.accessioned2021-06-13T05:48:11Z-
dc.date.available2012-08-01
dc.date.copyright2011-08-01
dc.date.issued2011
dc.date.submitted2011-07-26
dc.identifier.citationAllain V, Lorance P (2000) Age estimation and growth of some deep-sea fish from the Northeast Atlantic Ocean. Cybium 24(3) suppl.:7-16.
Andriyashev AP (1953) Ancient deep-water and secondary deep-water fishes and their importance in a zoogeographical analysis. In Notes on Special Problems in Ichthyology, Akademiya Nauk SSSR, Ikhtiologicheskaya Komissiya, Moscow, pp. 58-64. (English translation by Gosline AR. Issued by Bureau of Commercial Fisheries, USNM, Washington, DC, pp. 1-9.)
Arai T, Tsukamoto K (2000) Timing of metamorphosis and larval segregation of the Atlantic eels Anguilla rostrata and A. anguilla, as revealed by otolith microstructure and microchemistry. Mar Biol 137:39-45.
Arneri E, Morales-Nin B (2000) Aspects of the early life history of European hake from the central Adriatic. J Fish Biol 56: 1368-1380.
Baldwin CC, Johnson GD (1995) A larva of the Atlantic flashlight fish, Kryptophanaron alfredi (Beryciformes: Anomalopidae), with a comparison of beryciform and stephanoberyciform larvae. Bull Mar Sci 56:1-24.
Baumberger RE, Brown-Peterson NJ, Reed JK, Gilmore RG (2010) Spawning aggregation of beardfish, Polymixia lowei, in a deep-water sinkhole off the Florida Keys. Copeia 1:41-46.
Bradbury IR, Snelgrove PVR (2001) Contrasting larval transport in demersal fish and benthic invertebrates: the roles of behavior and advective processes in determining spatial pattern. Can J Fish Aquat Sci 58:811-823.
Brouard F, Grandperrin R, Kulbicki M, Rivaton J (1984) Note on observations of daily rings on otoliths of deepwater snappers. ICLARM (International Centre for Living Aquatic Resources Management) Translations 3, Manila, Philippines, p 8.
Brown AL, Busby MS, Mier KL (2001) Walleye pollock Theragra chalcogramma during transformation from the larval to juvenile stage: otolith and osteological development. Mar Biol 139: 845-851.
Bruun AF (1957) Deep sea and abyssal depth. Mem Geol Soc Am 67:641-672.
Bulman CM, Koslow JA (1995) Development and depth distribution of the eggs of orange roughy, Hoplostethus atlanticus (Pisces: Trachichthyidae). Mar Freshw Res 46:697-705.
Busby MS (2005) An unusual macrourid larva (Gadiformes) from San Juan Island, Washington, USA. Ichthyol Res 52: 86-89.
Cailliet GM, Andrews AH, Burton EJ, Watters DL, Kline DE, Ferry-Graham LA (2001) Age determination and validation studies of marine fishes: do deep-dwellers live longer? Exp Gerontol 36:739-764.
Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms, and applications. Mar Ecol Prog Ser 188:263-297.
Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42:1014-1032.
Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci 58:30-38.
Casas JM, Pineiro C (2000) Growth and age estimation of greater fork–beard (Phycis blennoides Brunnich, 1768) in the north and northwest of the Iberian Peninsula (ICES Division VIIIc and IXa). Fish Res 47: 19-25.
Chen HL, Tzeng WN (2006) Daily growth increment formation in otoliths
of Pacific tarpon Megalops cyprinoides during metamorphosis. Mar Ecol Prog Ser 312:255-263.
Clark M (2001) Are deep–water fisheries sustainable? - the example of Orange roughy (Hoplostethus atlanticus) in New Zealand. Fish Res 51:123-135.
Clarke MW, Kelly CJ, Connolly PL, Molloy JP (2001) Life history strategies of deepwater fish species and implications for management of the fishery. ICES CM 2001/ J: 11.
Cohen DM, Inada T, Iwamoto T, Scialabba N (1990) FAO species catalogue Vol 10 Gadiform fishes of the world (Gadiformes). An annotated and illustrated catalogue of cods, hakes, grenadiers and other Gadiform fishes known to date. FAO Fish Synop No. 125, Vol. 10, FAO, Rome.
Correia AT, Antunes C, Coimbra J (2002) Aspects of the early life history of the European conger eel (Conger conger) inferred from the otolith microstructure of metamorphic larvae. Mar Biol 140:165-173.
Correia AT, Able KW, Antunes C, Coimbra J (2004) Early life history of the American conger eel ( Conger oceanicus) as revealed by otolith microstructure and microchemistry of metamorphosing leptocephali. Mar Biol 145:477-488.
Correia AT, Antunes C, Isidro EJ, Coimbra J (2003) Changes in otolith microstructure and microchemistry during larval development of the European conger eel (Conger conger). Mar Biol 142:777-789.
Crabtree RE, Sulak KJ (1986) contribution to the life history and distribution of Atlantic species of the deep-sea fish genus Conocara (Alepocephalidae). Deep-Sea Res 33(9):1183-1201.
D'Onghia G, Basanisi M, Matarrese A, Megli F (1999) Reproductive strategies in macrourid fish: seasonality or not? Mar Ecol Prog Ser 184:189-196.
Dougherty AB (2008) Daily and sub-daily otolith increments of larval and juvenile walleye pollock, Theragra chalcogramma (Pallas), as validated by alizarin complexone experiments. Fish Res 90:271-278.
Drazen JC, Goffredi SK, Schlinling B, Stakes DS (2003) Aggregations of Egg-Brooding Deep-Sea Fish and Cephalopods on the Gorda Escarpment: a Reproductive Hot Spot. Biol Bull 205:1-7.
Duarte CM, Alcaraz M (1989) To produce many small or few large eggs: a size-independent reproductive tactic of fish. Oecologia 80:401-404.
Dunn MR, Rickard GJ, Sutton PJH, Doonan IJ (2009) Nursery grounds of the orange roughy around New Zealand. ICES J Mar Sci 66(5):871-885.
Elsdon T, Ayvazian S, McMahon, KM, Thorrold SR (2010) Experimental evaluation of stable isotope fractionation in fish muscle and otoliths. Mar Ecol Prog Ser 404: 195-05.
Endo H, Nakayama N, Suetsugu K, Miyake H (2010) A larva of Coryphaenoides pectoralis (Gadiformes: Macrouridae) collected by deep-sea submersible from off Hokkaido, Japan. Ichthyol Res 57:272-277.
Endo H, Yabe M, Amaoka K (1992) A rare macrourid alevin of the genus Hymenocephalus from the Pacific Ocean' Jpn J Ichthyol 39:265-267.
Evseenko SA, Okiyama M (2006) Remarkable ophidiid larva (Neobythitinae) from New Guinean waters. Ichthyol Res 53:192-196.
Fahay MP (1992) Development and distribution of cusk eel eggs and larvae in the Middle Atlantic Bight with a description of Ophidion robinsi n. sp. (Teleostei: Ophidiidae). Copeia 3:799-819.
Fahay MP (2007) Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One: Acipenseriformes through Syngnathiformes. Northwest Atlantic Fisheries Organization, Dartmouth, Canada.
Fedorov VV, Chereshnev IA, Nazarkin MV, Shestakov AV, Volobuev VV (2003) Catalog of marine and freswater fishes of the northern part of the Sea of Okhotsk. Vladivostok: Dalnauka.
Figueroa DE, Brunetti NE, Sakai M (2008) The southernmost record of notacanthiform Tiluropsis leptocephali, with notes on possible species identity. JMBA2 Biodiversity Records (Published on-line) 5580:1-4.
Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleisher M, Chap KK (eds) Data of geochemistry, 6th edn. US Geol Surv Prof Pap 440: 1-12.
Fujii T, Jamieson AL, Solan M, Bagley PM, Priede IG (2010) A large aggregation of liparids at 7703 meters and a reappraisal of the abundance and diversity of hadal fish. BioScience 60(7):506-515.
Fukui A, Kuroda H (2007) Larvae of Lamprogrammus shcherbachevi (Ophidiiformes: Ophidiidae) from the western North Pacific Ocean Ichthyol Res 54: 74-80.
Fukui A, Takami M, Tsuchiya T, Sezaki K, Igarashi Y, Kinoshita S, Watabe S (2010) Pelagic eggs and larvae of Coelorinchus kishinouyei (Gadiformes: Macrouridae) collected from Suruga Bay, Japan. Ichthyol Res 57:169-179
Fukui A, Tsuchiya T (2005) Pelagic larvae of Ventrifossa garmani (Gadiformes: Macrouridae) from Suruga Bay and offshore waters of Japan. Ichthyol Res 52: 311-315.
Fukui A, Tsuchiya T, Sezaki K, Watabe S (2008) Pelagic eggs and larvae of Coryphaenoides marginatus (Gadiformes: Macrouridae) collected from Suruga Bay, Japan. Ichthyol Res 55:284-293.
Garibaldi L, Limongelli L (2003) Trends in oceanic captures and clustering of large marine ecosystems: two studies based on the FAO capture database. FAO Fisheries Technical Paper 435, FAO, Rome.
Geoghegan P, Strube JN, Sher RA (1998) The first occurrence of the striped cusk eel, Ophidion marginatum (Dekay), in the Gulf of Maine. Northeastern Naturalist 5(4):363-366.
Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293: 2248-2251.
Gislefoss JS, Nydal R, Slagstad D, Sonninnen E, Holmen K (1998) Carbon time series in the Norwegian Sea. Deep Sea Res I 45:433-460.
Gordon JDM, Duncan JAR (1985) The ecology of the deep-sea benthic and benthopelagic fish on the slopes of the Rockall Trough, northeastern Atlantic. Prog Oceanogr 15:37-69.
Gordon JDM, Duncan JAR (1987) Deep-sea bottom-living fishes at two repeat stations at 2,200 and 2,900 m in the Rockall Trough, northeastern Atlantic Ocean. Mar Biol 96:309-325.
Haedrich RL, Merrett NR (1990) Little evidence for faunal zonation or communities in deep sea demersal fish faunas. Prog Oceanogr 24:239-250.
Hayashi A, Kawaguchi K, Watanabe H, Ishida M (2001) Daily growth increment formation and its lunar periodicity in otoliths of the myctophid fish Myctophum asperum (Pisces: Myctophidae). Fish Sci 67:811-817.
Hidalgo M, Tomás J, Høie H, Morales–Nin B, Ninnemann US (2008) Environmental influences on the recruitment process inferred from otolith stable isotopes in Merluccius merluccius off the Balearic Islands. Aquat Biol 3: 195-207.
Hirakawa N, Suzuki N, Narimatsu Y, Saruwatari T, Ohno A (2007) The spawning and settlement season of Chlorophthalmus albatrossis along the Pacific coast of Japan. Raffles Bull Zoo Supple 14:151-154.
Hislop JR, Gallego A, Heath MR, Kennedy FM, Reeves SA, Wright PJ (2001) A synthesis of the early life history of the anglerfish, Lophius piscatorius (Linnaeus, 1758) in northern British waters. ICES J Mar Sci 58: 70-86.
Hobson KA, Welch HE (1992) Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar Ecol Prog Ser 84:9-19.
Hoef J (2004) Stable isotope geochemistry. Springer-Verlag Berlin Heidelberg New York. Pp. 3-11.
Høie H, Folkvord A, Otterlei E (2003) Effect of somatic and otolith growth rate on stable isotopic composition of early juvenile cod (Gadus morhua L.) otolith. J Exp Mar Biol Ecol 289:41-58.
Høie H, Andersson C, Folkvord A, Karlsen Ø (2004a) Precision and accuracy of stable isotope signals in otoliths of pen reared cod (Gadus morhua L.) when sampled with high resolution micromill. Mar Biol 144:1039-1049.
Høie H, Folkvord A (2006) Estimating the timing of growth rings in Atlantic cod otoliths using stable oxygen isotopes. J Fish Biol 68:826-837.
Høie H, Otterlei E, Folkvord A (2004b) Temperature-dependent fractionation of oxygen isotopes in otoliths of juvenile cod (Gadus morhua L.) ICES J Mar Sci 61:43-251.
Iacumin P, Bianucci G, Longinelli A (1992) Oxygen and carbon isotopic composition of fish otoliths. Mar Biol 113: 537-542.
Jarosewich E and White JS (1987) Strontianite reference sample for electron microprobe and SEM analyses. J Sedimentary Petrol 57:762-763.
Kalish JM (1991) 13C and 18O isotopic disequilibria in fish otoliths: Metabolic and kinetic effects. Mar Ecol Prog Ser 75: 191-203.
Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61: 3461-3475.
Kroopnick P (1980) The distribution of 13C in the Atlantic Ocean. Earth Planet Sci Lett 49: 469-484.
Lampitt RS, Hillier WR, Challenor PG (1993) Seasonal and diel variation in the open ocean concentration of marine snow aggregates. Nature 362:737-739.
Leis JM (2010) Ontogeny of behavior in larvae of marine demersal fishes. Ichthyol Res 57: 325-342.
Li X, Chen Y, He D, Chen F (2009) Otolith characteristics and age determination of an endemic Ptychobarbus dipogon (Regan, 1905) (Cyprinidae: Schizothoracinae) in the Yarlung Tsangpo River, Tibet. Environ Biol Fish 86:53-61.
Lin I, Wang CH, Lin SW (2003) Seasonal variations of oxygen isotopic compositions in the Pingtung coastal waters, Taiwan. West Pac Earth Sci 3(1):21-32.
Lin YJ, Shiao JC, Ložys L, Plikshs M, Minde A, Iizuka Y, Rashal I, Tzeng WN (2009) Do otolith annular structures correspond to the first freshwater entry for yellow European eels Anguilla anguilla in the Baltic countries? J Fish Biol 75: 2709-2722.
López-Abellán LJ, Santanaría MTG, González JF (2008) Approach to ageing and growth back-calculation based on the otolith of the southern boarfish Pseudopentaceros richardsoni (Smith, 1844) from the south-west Indian Ocean seamounts. Mar Freshw Res 59:269-278.
Lukeneder A, Harzhauser M, Müllegger S, Piller WE (2008) Stable isotopes (δ18O and δ13C) in Spirula spirula shells from three major oceans indicate developmental changes paralleling depth distributions. Mar Biol 154:175-182.
Ma T, Miller MJ, Shinoda A, Minagawa G, Aoyama J, Tsukamoto K (2005) Age and growth of Saurenchelys (Nettastomatidae) and Dysomma (Synaphobranchidae) leptocephali in the East China Sea. J Fish Biol 67:1619-1630.
Machida Y, Okamura O, Ohta S (1988) Notes on Halosauropsis macrochir (Halosauridae: Notacanthiformes) from Japan. Jap J Ichthyol 35(1):78-82.
Marshall NB (1965) Systematic and biological studies of the macrourid fishes (Anacanthini–Teleostii). Deep-Sea Res 12: 299-322.
Marshall NB (1973) Family Macrouridae, In Fishes of the Western North Atlantic. Mem Sears Found Mar Res Mem 1 6:496-537.
Martinez P, Schminke HK (2005) DIVA-1 expedition to the deep sea of the Angola Basin in 2000 and DIVA-1 workshop 2003. Organisms Diversity and Evolution 5:1-2.
Marui M, Arai T, Miller MJ, Jellyman DJ, Tsukamoto K (2001) Comparison of early life history between New Zealand temperate eels and Pacific tropical eels revealed by otolith microstructure and microchemistry. Mar Ecol Prog Ser 213:273-284.
Menzies RJ (1965) Conditions for existence of life on the abyssal sea floor. Ocean Mar Biol Ann Rev 3:195-210.
Merrett NR (1987) A zone of faunal change in assemblages of abyssal demersal fish in the eastern north Atlantic: a response to seasonality in production? Biol Oceanogr 5:137-151.
Merrett NR (1989) The elusive macrourid alevin and its seeming lack of potential in contributing to intrafamilial systematics. In: Cohen D (eds) Papers on the systematics of gadiform fishes. Science Series 32. Natural History Museum of Los Angeles County, Los Angeles, CA, p 175-185.
Merrett NR, Barnes SH (1996) Preliminary survey of egg envelope morphology in the Macrouridae and the possible implications of its ornamentation. J Fish Biol 48:101-119.
Merrett NR, Haedrich RL (1997) Deep-Sea demersal fish and fisheries. Chapman & Hall, London, UK.
Mesa ML, Rossi FD (2008) Early life history of the black anglerfish Lophius budegassa Spinola, 1807 in the Mediterranean Sea using otolith microstructure. Fish Res 93:234-239.
Miller MJ (2009) Ecology of anguilliform leptocephali: remarkable transparent fish larvae of the ocean surface layer. Aqua BioSci Monogr 2(4):1-94.
Miller MJ, Otake T, Minagawa G, Inagaki T, Tsukamoto K (2002) Distribution of leptocephali in the Kuroshio Current and East China Sea. Mar Ecol Prog Ser 235:279-238.
Miquel JC, Fowler SW, La Rosa J, Buat-M´enard P (1994) Dynamics of the downward flux of particles and carbon in the open northwestern Mediterranean Sea. Deep Sea Res I 41:243-261.
Moku M, Ishimaru K, Kawaguchi K (2001) Growth of larval and juvenile Diaphus theta (Pisces: Myctophidae) in the transitional waters of the western North Pacific, Ichthyol Res 48:385-390.
Morales-Nin B (2000) Review of the growth regulation processes of otolith daily increment formation. Fish Res 46:53-67.
Morales-Nin B (2001) Mediterranean deep-water fish age determination and age validation: the state of the art. Fish Res 51:377-383.
Morales-Nin B, Aldebert Y (1997) Growth of juvenile Merluccius merluccius in the Gulf of Lions (NW Mediterranean) based on otolith microstructure and length-frequency analysis. Fish Res 30: 77-85.
Morales-Nin B, Bjelland RM, Moksness E (2005) Otolith microstructure of a hatchery reared European hake (Merluccius merluccius). Fish Res 74:300-305.
Morioka S, Machinandiarena L, Villarino MF (2001) Preliminary information on internal structures of otoliths and growth of ling, Genypterus blacodes (Ophidiidae), larvae and juveniles collected off Argentine. Bull J Soc Fish Oceanogr 65(2): 59-66.
Moseley HN (1880) Deep-Sea Dredging and Life in the Deep Sea. Nature 21:543-547.
Mulcahy SA, Killingley JS, Phleger CE, Berger WH (1979) Isotopic composition of otoliths from a benthopelagic fish, Coryphaenoides acrolepis, Macrouridae: Gadiforrnes. Oceanol Acta 21(4): 423-427.
Mundy BC (1990) Development of larvae and juveniles of the alfonsins, Beryx
splendens and B. decadactyliis (Berycidae, Beryciformes). Bull Mar Sd 46: 257-273.
Mundy BC (2005) Checklist of the fishes of the Hawaiian Archipelago. Bishop Museum Bulletins in Zoology. Bishop Mus Bull Zool 6:1-704.
Nagasawa T (2001) Early life history of kitsune-mebaru, Sebastes vulpes (Scorpaenidae), in the Sea of Japan. Ichthyol Res 47(4):311-320.
Nakabo T (2002) Fishes of Japan with pictorial keys to the species, English edition I. Tokai University Press, Japan, pp v-866.
Narimatsu Y, Hattori T, Ueda Y, Matsuzak H, Shiogaki M (2007) Somatic growth and otolith microstructure of larval and juvenile Pacific cod Gadus macrocephalus. Fish Sci 73:1257-1264.
Nielsen JG (1969) Systematics and biology of the Aphyonidae (Pisces,Ophidioidea). Galathea Rept 10:1-90.
Nielsen JG, Cohen DM, Markle DF, Robins CR (1999) FAO Species Catalogue. Vol. 18. Ophidiiform fishes of the world (Order Ophidiiformes). An annotated and illustrated catalogue of pearlfishes, cusk-eels, brotulas and other ophidiiform fishes known to date. FAO Fish Synop No. 125, Vol. 18, FAO, Rome.
Nonogaki H, Nelson JA, Patterson WP (2007) Dietary histories f herbivorous loricariid catfishes: evidence from δ13C values of otoliths. Environ Biol Fishes 78: 13-21.
Okiyama M, Kato H (1997) A pelagic juvenile of Barathronus pacificus (Ophidiiformes: Aphyonidae) from the Southwest Pacific, with notes on its metamorphosis. Ichthyol Res 44 (2):222-226.
Okiyama M, Kato H (2002) Larval development of Brotulotaenia nielseni (Ophidiiformes, Ophidiidae, Brotulotaeniinae), with notes on relationships. Bull Natn Sci Mus, Tokyo, Ser A 28(3):159-170.
Okiyama M, Yamaguchi M (2004) A new type of exterilium larva referable to Leptobrotula (Ophidiiformes: Ophidiidae: Neobythitinae) from tropical Indo-West Pacific. Ichthyol Res 51:77-80.
Orlov AM, Tokranov AM (2008) Some ecological and biological features of giant and popeye grenadiers in the Pacific waters off the Northern Kuril Islands and Southeastern Kamchatka. In: Iwamoto T, Orlov AM (eds) Grenadiers of the world oceans: biology, stock assessment, and fisheries. American Fisheries Society Symposium 63. American Fisheries Society, Bethesda, p 225-260.
Otake T, Ishii T, Nakahara M, Nakamura R (1994) Drastic changes in otolith strontium/calcium ratios in leptocephali and glass eels of Japanese eel Anguilla japonica. Mar Ecol Prog Ser 113:189-193.
Otake T, Ishii T, Ishii T, Nakahara M, Nakamura R (1997) Changes in otolith strontium: Calcium ratios in metamorphosing Conger myriaster leptocephali. Mol Phylogenet Evol 128:565-572
Palomera I, Olivar MP, Morales-Nin B (2005) Larval development and growth of the European hake Merluccius merluccius in the northwestern Mediterranean. Sci Mar 69:251-258.
Patterson WP, Smith GR, Lohmann KC (1993) Continental paleothermometry and seasonality using isotopic composition of aragonitic otoliths in freshwater fishes. Geophys Monogr 78:191-202.
Pfeiler E (1998) Acidic glycosaminoglycans in marine teleost larvae: evidence for a relationship between composition and negative charge density in elopomorph leptocephali. Comp Biochem Physiol 119B:137-144.
Pfeiler E, Govoni JJ (1993) Metabolic rates in early life history stages of elopomorph fishes. Biol Bull 185:277-283.
Powell SM, Haedrich RL, McEachran JD (2003) The deep-sea demersal fish fauna of the northern Gulf of Mexico. J Northwest Atl Fish Sci 31:19-33.
Priede IG, Bagley PM, Smith KL (1994) Seasonal change in activity of abyssal demersal scavenging grenadiers Coryphaenoides (Nematonurus) armatus in the eastern Pacific Ocean. Limnol Oceanogr 39:279-285.
Radtke RL, Showers W, Moksness E, Lenz P (1996) Environmental information stored in otoliths: insights from stable isotopes. Mar Biol 127:161-170.
Radtke RL, Showers W, Moksness E, Lenz P (1998) Corrigendum: environmental information stored in otoliths: insights from stable isotopes. Mar Biol 132:347-348.
Richards WJ, Hartel KE (2006) Alepocephalidae: Slickhead. In Richards WJ (ed) Early stages of Atlantic fishes: an identification guide for western central North Atlantic. Taylor & Francis Group, p 161-168.
Roule L, Angel E (1930) Larves et alevins de poissons provenant des croisieres du Prince A1abert I de Monaco. Result Camp Sci. Prince Albert I 79:1-148.
Sazonov YI (1997) A new species of Conocara genus (Alepocephalidae) from the Indo-Pacific Region. J Ichthyol 37(9):749-753.
Sazonov YI, Ivanov AN (1979) New species of the family Alepocephalidae, order Salmoniformes, from the underwater ridges of the tropical Indian ocean. J Ichthyol 19(6):40-46.
Secor DH, Dean JM, Campana SE, McFarlane GA, Beamish RJ (1995) Validation of the otolith cross-section method of age determination for sablefish (Anoplopoma fimbria) using oxytetracycline. In: Secor DH, Dean JM, Campana SE (Eds) Recent Developments in Fish Otolith Research. Columbia: University of South Carolina Press, South Carolina, p 319-330.
Shephard S, Trueman C, Rickaby R, Rogan E (2007) Juvenile life history of NE Atlantic orange roughy from stable isotopes. Deep Sea Res I 54: 1221-1230.
Shiao JC, Ložys L, Iizuka Y, Tzeng WN (2006) Discrimination between restocked and naturally recruited European eels Anguilla anguilla by otolith Sr:Ca ratio analysis. J Fish Biol 69:749-769.
Shiao JC, Wang SW, Yokawa K, Ichinokawa M, Takeuchi Y, Chen YG, Shen CC (2010) Natal origin of Pacific bluefin tuna Thunnus orientalis inferred from otolith oxygen isotope composition. Mar Ecol Prog Ser 420:207-219.
Shiao JC, Yui TF, Høie H, Ninnemann U, Chang SK (2009) Otolith O and C stable isotope composition of southern bluefin tuna Thunnus maccoyii (Pisces: Scombridae) as possible environmental and physiological indicators. Zool Stu 48(1): 71-82.
Smith DG (1970) Notacanthiform leptocephali in the Western North Atlantic. Copeia:1-9.
Smith DC, Fenton GE, Robertson SG, Short SA (1995) Age determination and growth
of orange roughy (Hoplostethus atlanticus): a comparison of annulus counts with
radiometric ageing. Can J Fish Aquat Sci, 52:391-401.
Smith NG, Jones CM (2006) Substituting otoliths for chemical analyses: Does sagitta = lapillus? Mar Ecol Prog Ser 313:241-247.
Snelgrove PVR, Haedrich RL (1985) Structure of the deep demersal fish fauna off Newfoundland. Mar Ecol Prog Ser 27:99-107.
Snelgrove PVR, Smith CR (2003) A riot of species in an environmental calm: the paradox of the species-rich deep-sea floor. Oceanography and Marine Biology: An Annual Review 40:311-342.
Solomon CT, Weber PK, Cech JJ, Ingram BL and others (2006) Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Can J Fish Aquat Sci 63: 79-89.
Stein DL (1980) Description and occurrence of macrourid larvae and juveniles in the
Northeast Pacific Ocean off Oregon, U.S.A.. Deep-Sea Res 27A:889-900.
Stein DL, Pearcy WG (1982) Aspects of reproduction, early life history, and biology of macrourid fishes off Oregon, U.S.A. Deep-Sea Res 29(11A):1313-1329.
Suntsov AV (2007) Brotulotaenia (Teleostei: Ophidiiformes) larval development
revisited: an apparently new type of mimetic resemblance in the epipelagic ocean.
Raffles Bulletin of Zoology. Suppl 14: 177-186.
Swan SC, Gordon JMD (2001) A review of age estimation in macrourid fishes, with
new data on age validation of juveniles. Fish Res 51:177-196.
Takami M, Fukui A (2010) Larvae and juveniles of Leptoderma lubricum and L. retropinnum (Argentiformes: Alepocephalidae) collected from Suruga Bay, Japan. Ichthyol Res 57:406-415.
Thorrold SR, Campana SE, Jones CM, Swart PK (1997) Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim Cosmochim Acta 61:2909-2919.
Tracey DM, Horn PL (1999) Background and review of ageing orange roughy
(Holostethus atlanticus, Trachichthyidae) from New Zealand and elsewhere. NZ J Mar and Freshw Res 33:67-86.
Treble MA, Campana SE, Wastle RJ, Jones CM, Boje J (2008) Growth analysis and age validation of a deep-water Arctic fish, the Greenland halibut (Reinhardtius hippoglossoides). Can J Fish Aquat Sci 65(6):1047-1059.
Tzeng WN (1996) Effects of salinity and ontogenetic movements on strontium:calcium ratios in the otoliths of the Japanese eel, Anguilla japonica Temminck and Schlegel. J Exp Mar Biol Ecol 199:111-122.
Tzeng WN, Tsai YC (1994) Changes in otolith microchemistry of the Japanese eel, Anguilla japonica, during its migration from the ocean to the rivers of Taiwan. J Fish Biol 45:671-684.
Verweij MC, Nagelkerken I, Hans I, Ruseler SM (2008) Seagrass nurseries contribute to coral reef fish populations. Limnol Oceanogr 53(4): 1540-1547.
Vieira AR, Figueiredo I, Farias I, Neves A, Morales-Nin B, Sequeira V, Martins MR, Gordo LS (2009) Age and growth of black scabbardfish (Aphanopus carbo Lowe, 1839) in the southern NE Atlantic. Sci Mar 73S2:33-46.
Wakefield WW, Smith KL (1990) Ontogenetic vertical migration in Sebastolobus altivelis as a mechanism for transport of particulate organic matter at continental slope depths. Limnol Oceanogr 35:1314-1328.
Weidman CR, Millner R (2000) High-resolution stable isotope records from North Atlantic cod. Fish Res 46: 327-342.
Weitkamp DE, Sullivan RD (1939) Fishes. The John Murray Expedition 1933-34. Sci Reports 7 (1):1-116.
Wilson RR (1988) Analysis of growth zones and microstructure in otoliths of two macrourids from the North Pacific abyss. Envir Biol Fishes 21:251-261.
Wilson DT, Mccormick MI (1997) Spatial and temporal validation of settlement-marks in the otoliths of tropical reef fishes. Mar Ecol Prog Ser 153:259-271.
Yamada H, Chimura M, Asami K, Sato T, Kobayashi M, Nanami A (2009) Otolith development and daily increment formation in laboratory-reared larval and juvenile black-spot tuskfish Choerodon schoenleinii. Fish Sci 75:1141-1146.
Yeh HM, Lee MY, Shao KT (2005) Fifteen Taiwanese New Records of Ophidiid Fishes (Pisces: Ophidiidae) Collected from the Deep Waters by the RV 'Ocean Researcher I'. J Fish Soc Taiwan 32(3):279-299.
Yeh HM, Lee MY, Shao KT (2006a) Ten Taiwanese New Records of Alepocephalid Fishes (Pisces: Alepocephalidae) Collected from the Deep Waters by the RV 'Ocean Researcher I'. J Fish Soc Taiwan 33(3):265-279.
Yeh HM, Lee MY, Shao KT (2006b) Three New Records of Halosaurid Fishes (Pisces: Halosauridae) from the Deep Waters Adjacent to Taiwan. J Fish Soc Taiwan 33(4):345-355.
Zeldis JR, Grimes PJ, Ingerson JK (1995) Ascent rates, vertical distribution, and a thermal history model of development of orange roughy, Hoplostethus atlanticus eggs in the water column. Fish Bull 93(2):373-385.
林清芬(2000)南海及呂宋海峽海水氧同位素組成之研究。國立中山大學海洋地質及化學研究所。47-48頁。
邱美倫 (2001) 台灣海域產鼠尾鱈科魚類之系統分類研究。國立台灣大學動物學研究所。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33885-
dc.description.abstract耳石為魚類自然生物礦化沉積形成的碳酸鈣結構,其微細結構可以用來判讀魚類的年齡以及生活史階段,而沉積於其中的化學訊號則記錄下魚類經歷過的環境資訊。本研究共分析7科16種深海底棲魚類耳石上的微細結構、穩定性碳氧同位素以及化學組成,用以探討其生活史,這些魚類分別採樣自台灣東北部海域與南海北部。以氧同位素所推算的溫度變化顯示在本次研究的物種中,可分為有發育性垂直遷移(ontogenetic vertical migration)的種類以及具底棲性仔稚魚的種類。具有發育性垂直遷移的魚類可依不同的分類群和棲地深度有不同的生活史模式,例如有柳葉幼生(leptocephalus)的通鰓鰻科(Synaphobranchidae)和海蜥魚科(Halosauridae)、產下浮性卵和浮游仔稚魚的鼠尾鱈科(Macrouridae)和鼬魚科(Ophidiidae)以及胎生的棕斑盲鼬鳚(Barathronus maculates)等,不同的魚種有不同的仔稚魚棲息深度與沉降時的發育階段。另外,黑頭魚科和黑首燧鯛(Hoplostethus melanopterus)則是在仔稚魚時期即在與成體棲息深度類似的深海底棲環境生活。碳同位素顯示了有垂直遷移習性的魚類,其幼齡時有較高的代謝率而在遷至深處時則明顯變低,無垂直遷移或遷移距離較短的魚類則是隨著個體發育無明顯的代謝率改變。
本研究結果顯示了不同分類群和不同棲息深度的深海底棲魚類有不同的生活史模式並且由耳石所建立出的生活史和前人的研究相符。此多樣化的生活史暗示了深海生物不同的適應策略以及深海生物多樣性。
zh_TW
dc.description.abstractOtolith is a metabolically inert calcium carbonate that has been used to study the life history of fish. In this study, we investigate the life histories of 16 species of deep-sea demersal fishes, which were collected in the Pacific off north-eastern Taiwan and northern South China Sea by examining otolith microstructures, stable isotopic and chemical compositions. Otolith δ18O profiles suggested two major life history patterns; some species had ontogenetic vertical migration and some species were non-migrators. Vertical migrations were found in oviparous Synaphobranchidae, Halosauridae, Macrouridae, Ophidiidae and viviparous Barathronus maculates but with different migratory distances and timing, although they all had pelagic larvae. On the other hand, with demersal larvae, Alepocephalidae and Hoplostethus mwlanopterus spent most of their time on similar depths from larvae to adults. Otolith δ13C profiles suggested that fishes with longer vertical migration distance had higher metabolic rate in their early life-history stages than the later stages. However, the metabolic rate did not varied for the fishes living in the certain depth from larvae to adults.
Life history patterns of deep-sea demersal fishes varied among different taxonomic groups and habitat depths. The results were comparable to previous studies. Different life histories indicated different adaptations or life strategies to the deep-sea environment.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:48:11Z (GMT). No. of bitstreams: 1
ntu-100-R98241204-1.pdf: 10759450 bytes, checksum: 66baf28c2ad90240284c30fcea5cbc6f (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
國立臺灣大學碩士學位論文 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
表目錄 viii
圖目錄 ix
一、 前言 1
1.1 深海底棲魚類生活史研究 1
1.2 耳石與生活史研究 3
1.2.1 耳石特殊結構 3
1.2.2 耳石穩定性同位素組成 4
1.2.3 耳石鍶鈣比分析 5
1.3 研究目的與假設 5
二、材料與方法 7
2.1 採樣測站 7
2.2 深海底棲魚採樣方法 7
2.3 魚類樣本處理 8
2.3.1 鑑定與形質測量 8
2.3.2 耳石包埋 8
2.4 耳石微細結構分析 9
2.5 耳石穩定性碳氧同位素分析 9
2.6 海水穩定性碳氧同位素分析 11
2.7 耳石鍶鈣比分析 11
2.8 相關性分析 12
三、結果 13
3.1 各測站水文概述 13
3.2 海鰱總目 14
3.2.1 耳石微細結構分析 14
3.2.2 耳石穩定性碳氧同位素分析 15
3.2.3 耳石鍶鈣比分析 16
3.3 鱈形目鼠尾鱈科 16
3.3.1 耳石微細結構分析 16
3.3.2 耳石穩定性碳氧同位素分析 18
3.4 鼬魚目裸鼬鳚科 19
3.4.1 耳石微細結構分析 19
3.4.2耳石穩定性碳氧同位素分析 19
3.5 鼬魚目鼬魚科 20
3.5.1 耳石微細結構分析 20
3.5.2耳石穩定性碳氧同位素分析 20
3.6 金眼鯛目燧鯛科 21
3.6.1 耳石微細結構分析 21
3.6.2 耳石穩定性碳氧同位素分析 21
3.7 水珍魚目黑頭魚科 22
3.7.1 耳石微細結構分析 22
3.7.2 耳石穩定性碳氧同位素分析 22
3.8 相關性分析 23
四、討論 24
4.1 海水氧同位素資料 24
4.2 以魚類耳石中微細結構探討深海魚類生活史 24
4.3 以耳石穩定性同位素探討深海魚類生活史 27
4.3.1 穩定性氧同位素 27
4.3.2 穩定性碳同位素 28
4.3.3 綜合探討 29
4.4 比較耳石微細結構與化學組成 31
4.4.1 微細結構與穩定性碳氧同位素 31
4.4.2 微細結構與鍶鈣比 32
4.5 深海底棲魚類生活史多樣性 32
4.5.1 海鰱總目通鰓鰻科與海蜥魚科 32
4.5.2 鱈形目鼠尾鱈科 33
4.5.3 鼬魚目裸鼬鳚科與鼬魚科 35
4.5.4 金眼鯛目燧鯛科 36
4.5.5 水珍魚目黑頭魚科 37
4.5.6 綜合探討 38
五、總結 40
參考文獻 41

表目錄
表一、各測站詳細資料。Cr866、Cr880、Cr906和Cr943航次進行底拖採樣的測站位置、採樣日期與深度。 58
表二、Cr866、Cr880、Cr906和Cr943航次中所採樣並進行分析之魚類詳細資料。 59
表三、各魚種耳石核心測量點上δ18O、δ13C、由δ18O推測出的深度(Depth)以及文獻中較近似物種之仔稚魚紀錄深度(Records)。 62
表四、各魚種耳石內δ18O與δ13C之皮爾森相關係數分析(Pearson correlation coefficient;γ)。 63
 
圖目錄
圖一、Cr866 (St.1、St.2)、Cr880 (St.3)、Cr906 (St.4)與Cr943 (St.5)航次底拖採樣及測定水文資料的測站地理位置。 64
圖二、各採樣點溫鹽垂直剖面圖。 65
圖三、各採樣點計算後之預測海水氧同位素值。 66
圖四、St.5樣點附近海水氧同位素實測值。 67
圖五、各採樣點計算後之預測魚類耳石氧同為素值。 68
圖六、由海洋資料庫提供之St.4樣點附近海水(a)溫鹽資料、(b)推得的海水氧同位素值與(c)預測耳石氧同位素值。 69
圖七、微量括取器下採樣點與耳石上對應的位置。 70
圖八、EPMA偵測之鍶鈣比與耳石上相對應的位置。 71
圖九、(a)高氏合鰓鰻(Synaphobranchus kaupii)與(b)前肛鰻(Dysomma sp.)矢狀石和(c)(d)高氏合鰓鰻扁狀石。 72
圖十、(a)異鱗海蜥魚(Aldrovandia affinis)矢狀石和(c)扁狀石以及(b)短吻擬海蜥魚(Halosauropsis macrochir)矢狀石和(d)扁狀石。 73
圖十一、(a)高氏合鰓鰻(Synaphobranchus kaupii)耳石δ18O與(b)δ13C分析。 74
圖十二、(a)異鱗海蜥魚(Aldrovandia affinis)耳石δ18O與(b)δ13C分析。 75
圖十三、(a)短吻擬海蜥魚(Halosauropsis macrochir)耳石δ18O與(b)δ13C分析。 76
圖十四、(a)前肛鰻(Dysomma sp.)矢狀石、(b)高氏合鰓鰻(Synaphobranchus kaupii)扁狀石和(c)異鱗海蜥魚(Aldrovandia affinis)矢狀石鍶鈣比。 77
圖十四(續)、(d)異鱗海蜥魚(Aldrovandia affinis)扁狀石、(e)短吻擬海蜥魚(Halosauropsis macrochir)扁狀石和(f)矢狀石鍶鈣比。 78
圖十五、(a)庫氏膜首鱈(Hymenocephalus kuronumai)和(b)刺吻膜首鱈(Hymenocephalus lethonemus)的矢狀石。 79
圖十六、(a)庫氏膜首鱈(Hymenocephalus kuronumai)和(b)刺吻膜首鱈(Hymenocephalus lethonemus)輪寬分析。 80
圖十七、(a)日本底尾鱈(Bathygadus nipponicus)、(b)粗鱗突吻鱈(Coryphaenoides acrolepis)、(c)(d)黑緣突吻鱈(Coryphaenoides marginatus)的矢狀石。 81
圖十八、(a)日本底尾鱈(Bathygadus nipponicus)、(b)黑緣突吻鱈(Coryphaenoides marginatus) 和(c)粗鱗突吻鱈(Coryphaenoides acrolepis)輪寬分析。 82
圖十九、(a)膜首鱈屬魚類(Hymenocephalus sp.)的矢狀石。 83
圖二十、(a)庫氏膜首鱈(Hymenocephalus kuronumai)耳石δ18O與(b)δ13C分析。 84
圖二十一、(a)刺吻膜首鱈(Hymenocephalus lethonemus)耳石δ18O與(b)δ13C分析。 85
圖二十二、(a)日本底尾鱈(Bathygadus nipponicus)耳石δ18O與(b)δ13C分析。 86
圖二十三、(a)粗鱗突吻鱈(Coryphaenoides acrolepis)耳石δ18O與(b)δ13C分析。 87
圖二十四、(a)黑緣突吻鱈(Coryphaenoides marginatus)耳石δ18O與(b)δ13C分析。 88
圖二十五、(a)膜首鱈魚類(Hymenocephalus sp.)耳石δ18O與(b)δ13C分析。 89
圖二十六、棕斑盲鼬鳚(Barathronus maculates)的矢狀石。 90
圖二十七、(a)棕斑盲鼬鳚(Barathronus maculates)耳石δ18O與(b)δ13C分析。 91
圖二十八、(a)(b)短絲指鼬魚(Dicrolene tristis)和(c)重齒單趾鼬魚(Monomitopus pallidus)的矢狀石。 92
圖二十九、(a)短絲指鼬魚(Dicrolene tristis)耳石δ18O與(b)δ13C分析。 93
圖三十、黑首燧鯛(Hoplostethus melanopus)的(a)(b)矢狀石與(c)扁狀石。 94
圖三十一、(a)黑首燧鯛(Hoplostethus melanopus)耳石δ18O與(b)δ13C分析。 95
圖三十二、(a)(c)二色黑頭魚(Alepocephalus bicolor)、(b)克氏錐首魚(Conocara kreffti)矢狀石和(d)(e)二色平頭魚的扁狀石。 96
圖三十三、(a)克氏錐首魚(Conocara kreffti)耳石δ18O與(b)δ13C分析。 97
圖三十四、(a)二色平頭魚(Alepocephalus bicolor)耳石δ18O與(b)δ13C分析。 98
圖三十五、推測高氏合鰓鰻(Synaphobranchus kaupii)(淺綠色)異鱗海蜥魚(Aldrovandia affinis)(黃色)和短吻擬海蜥魚(Halosauropsis macrochir)(粉紅色)之生活史。 99
圖三十六、推測庫氏膜首鱈(Hymenocephalus kuronumai)(黑色)、刺吻膜首鱈(Hymenocephalus lethonemus)(紫色)和日本底尾鱈(Bathygadus nipponicus)(綠色)之生活史。 100
圖三十七、推測膜首鱈屬魚類(Hymenocephalus sp.)(紅色)、粗鱗突吻鱈(Coryphaenoides acrolepis)(藍色)和黑緣突吻鱈(Coryphaenoides marginatus)(橘色)之生活史。 101
圖三十八、推測棕斑盲鼬鳚(Barathronus maculates)(紅色)和短絲指鼬魚(Dicrolene tristis)(深藍)之生活史。 102
圖三十九、推測黑首燧鯛(Hoplostethus melanopus)之生活史。 103
圖四十、推測克氏錐首魚(Conocara kreffti)(桃紅色)和二色平頭魚(Alepocephalus bicolor)(草綠色)之生活史。 104
dc.language.isozh-TW
dc.title以耳石微細結構與穩定性同位素組成探討深海底棲魚類之生活史zh_TW
dc.titleLife history of deep-sea demersal fishes revealed by otolith microstructure and stable isotopic compositionen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉信明,王佳惠,飯塚義之
dc.subject.keyword深海底棲魚,耳石,穩定性同位素,發育性垂直遷移,生活史,zh_TW
dc.subject.keyworddeep-sea demersal fish,otolith,stable isotope,ontogenetic vertical migration,life history,en
dc.relation.page104
dc.rights.note有償授權
dc.date.accepted2011-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
10.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved