Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33867
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃美嬌
dc.contributor.authorYu-Wei Liuen
dc.contributor.author劉又維zh_TW
dc.date.accessioned2021-06-13T05:47:47Z-
dc.date.available2006-07-17
dc.date.copyright2006-07-17
dc.date.issued2006
dc.date.submitted2006-07-10
dc.identifier.citation[1]G..S. Nolas et al. (1998), The next generation of thermoelectric materials, in 17th International Conference on Thermoelectrics, Nagoya, Japan:IEEE.
[2]T. Yao (1987), Thermal Properties of AlAs/GaAs Superlattice, Appl. Phys. Lett. 51, 1798-1980.
[3]X. Y. Yu, G. Chen, A. Verma, and J. S. Smith (1995), Temperature Dependence of Thermophysical Properties of GaAs/AlAs Periodic Structure, Appl. Phys. Lett. 67, 3554-3556.
[4]X. Y. Yu, L. Zhang, and G. Chen (1996), Thermal-Wave Measurement of Thin-Film Thermal Diffusivity with Different Laser Beam Configurations, Rev. Sci. Instrum. 67, 2312-2316.
[5]S.-M. Lee, D. G. Cahill, and R. Venkatasubramanian (1997), Thermal Conductivity of Si-Ge Superlattices, Appl. Phys. Lett. 70, 2957-2959.
[6]W. L. Liu, T. Borca-Tasciuc, and J. L. Liu (2001), In-plane Thermoelectric Properties of Si/Ge Superlattice, in 20th International Conference on Thermoelectrics:IEEE, 340-343.
[7]B. Yang, W. L. Liu, and J. L. Liu (2002), Measurement of Anisotropic Thermoelectric Properties in Superlattices, Appl. Phys. Lett. 81, 3588-3590.
[8]W. S. Capinski, H. J. Maris (1996), Thermal Conductivity of GaAs/AlAs Superlattices, Physica B 219 & 220, 699-701.
[9]W. S. Capinski, M. Cardona, D. S. Katzer, H. J. Maris, K. Ploog, and T. Ruf (1999), Thermal Conductivity of GaAs/AlAs Superlattices, Physica B 263 & 264, 530-532.
[10]W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, and K. Ploog (1999), Thermal-conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-probe Technique, Phys. Rev. B 59, 8105-8113.
[11]R. Venkatasubramanian (2000), Lattice Thermal Conductivity Reduction and Phonon Localizationlike Behavior in Superlattice Structures, Phys. Rev. B 61, 3091-3097.
[12]R. Venkatasubramanian (2001), Thin-film Thermoelectric Devices with High Room-temperature Figures of Merit, Nature 413, 597-602.
[13]D. G. Cahill et al. (2003), Nanoscale Thermal Transport, J. Appl. Phys. 93, 793-818.
[14]G. Chen (2000), Phonon heat conduction in nanostructures, Int. J. Therm. Sci. 39, 471-480.
[15]M. V. Simkin and G. D. Mahan (2000), Minimum Thermal Conductivity of Superlattices, Phys. Rev. Lett. 84, 927-930.
[16]L. D. Hicks and M. S. Dresselhaus (1993), Effect of Quantum-well Structures on the Thermoelectric Figure of Merit, Phys. Rev. B 47, 12727-12731.
[17]L. D. Hicks and M. S. Dresselhaus (1993), Thermoelectric Figure of Merit of a One-Dimensional Conductor, Phys. Rev. B 47, 16631-16634.
[18]P. Hyldgaard and G. D. Mahan (1996), Phonon Knudsen Flow in GaAs/AlAs Superlattices, Thermal Conductivity 23, 172-182.
[19]G. Chen (1997), Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures, J. Heat Tran. 119, 220-229.
[20]S. Tamura and Y. Yanaka (1999), Phonon Group Velocity and Thermal Conduction in Superlattices, Phys. Rev. B 60, 2627-2630.
[21]W. E. Bies, R. J. Radtke, and H. Ehrenreich (2000), Phonon Dispersion Effects and the Thermal Conductivity Reduction in GaAs/AlAs Superlattices, J. Appl. Phys. 88, 1498-1503.
[22]A. Balandin and K. L. Wang (1998), Significant Decrease of the Lattice Thermal Conductivity due to Phonon Confinement in a Free-standing Semiconductor Quantum Well, Phys. Rev. B 58, 1544-1549.
[23]A. Khitun, A. Balandin, K. L. Wang (1999), Modification of the Lattice Thermal Conductivity in Silicon Quantum Wires due to Spatial Confinement of Acoustic Phonons, Superlattices and Microstructures 26, 181-193.
[24]S. G. Walkauskas, D. A. Broido, and K. Kempa (1999), Lattice thermal conductivity of wires, J. Appl. Phys. 85, 2579-2582.
[25]M. Asheghi and K. E. Goodson (2003), Thermal Conductivity Model for Nearly Pure and Doped Thin Silicon Layers at High Temperatures, 2003 ASME International Mechanical Engineering Congress & Exposition.
[26]J. Zou and A. Balandin (2001), Phonon heat conduction in a semiconductor nanowire, J. Appl. Phys. 89, 2932-2938.
[27]A. Majumdar (1993), Micro Heat Conduction in Dielectric Thin Films, J. Heat Tran. 115, 7-16.
[28]M. G. Holland (1963), Analysis of Lattice Thermal Conductivity, Phys. Rev. 132, 2461-2471.
[29]B. A. Auld (1990), Acoustic Fields and Waves in Solids, Krieger Publishing Company, Malabar, Florida.
[30]O. Weis (1986), Phonon Radiation across Solid/Solid Interfaces with the Acoustic Mismatch Model, Nonequilibrium Phonons in Nonmetallic Crystals, edited by W. Eisenmenger and A. A. Kaplyanskiphys, North-Holland, Amsterdam.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33867-
dc.description.abstract當熱電元件尺寸縮小時,其晶格熱傳導係數會因尺寸效應而降低,致冷效率因而提升。其中超晶格薄膜是由不同材質之薄膜週期性堆疊而構成,內部存在多層介面,使得熱傳導係數可更顯著地降低。本論文主要研究目標在重建一個計算超晶格薄膜平面方向晶格熱傳導係數之理論,其次再探討溫度記憶效應所造成之影響。整個分析的理論基礎是以粒子說觀念來處理聲子,以鬆弛時間近似法來求解聲子波茲曼傳遞方程式,得到受邊界影響而改變的非平衡聲子分佈,再配合適當之聲子色散關係及鬆弛時間模型以求出熱傳導係數。從分析中得知,由於聲子接觸到超晶格薄膜之介面時會產生反射或穿透之情形,在經過無數次與介面作用後會使聲子熱流量降低,並且當薄膜厚度降低時,與邊界作用之次數會更加頻繁故上述之效應會愈趨明顯,這些因素都會導致超晶格薄膜平面方向之晶格熱傳導係數驟降。從預測出的熱傳導係數與溫度、厚度的關係來看,皆與前人之實驗數據相當一致。並且發現在適當的厚度比下,可將熱傳導係數降到最低。而在分析溫度記憶效果後,可推論在室溫附近可忽略其所造成之影響。zh_TW
dc.description.abstractIt is known that the thermal conductivity of a thin-film superlattices semiconductor has a larger figure-of-merit, mainly because its thermal conductivity is significantly reduced by the size effects. The goal of this study is to re-establish a theory for calculating/predicting the in-plane lattice thermal conductivity of a thin-film superlattices semiconductor. The theory is particle-based for the thickness of each layer still being larger than the phonon coherent length scale. The phonon Boltzmann transport equation is thus solved under the single relaxation-time approximation and proper boundary conditions. From the calculation results of the present model, it is found that the phonon heat flow rate is largely decreased due to the infinitely many interactions between phonons and the partially specular and partially diffuse interfaces through reflections and refractions. Moreover, the thinner each layer, the stronger the interface scattering effect is. An optimum thickness ratio resulting in a minimum lattice thermal conductivity is also found due to a balance between the difference of the intrinsic thermal conductivities and the boundary scattering effect. It is also shown that the predicted thermal conductivities also agree well with the experimental measurements. Finally, the temperature-memory effect on the lattice thermal conductivity is found to be negligible at room temperature.en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:47:47Z (GMT). No. of bitstreams: 1
ntu-95-R93522304-1.pdf: 1967559 bytes, checksum: f2f6454631740d1588fbc480653bee6d (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要 v
英文摘要 vi
表目錄 x
圖目錄 xi
符號說明 xiii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機及目的 5
1-3 論文架構 6
第二章 理論模型與基本假設 7
2-1 聲子分佈函數 7
2-1-1 統御方程式 7
2-1-2 鏡反射定律與折射定律 10
2-1-3 邊界條件 11
2-2 熱傳遞現象 18
2-2-1 熱通量 18
2-2-2 熱傳導係數 19
2-3 等效熱傳導係數 23
2-3-1 單層薄膜之熱傳導係數 23
2-3-2 超晶格薄膜等效熱傳導係數 24
2-4 聲子色散關係 25
2-4-1 正弦函數模型 25
2-4-2 線性模型 26
2-5 鬆弛時間 27
2-6 反射率及穿透率 29
第三章 溫度記憶效應 31
3-1 晶格熱傳之解法一 31
3-1-1 聲子分佈函數一般解 31
3-1-2 邊界條件 32
3-1-3 熱傳遞方程式 34
3-2 晶格熱傳之解法二 35
3-2-1 聲子分佈函數 35
3-2-2 熱傳遞方程式 38
第四章 結果與討論 41
4-1 砷化鎵/砷化鋁超晶格薄膜 41
4-1-1 材料參數 41
4-1-2 等厚超晶格 42
4-1-3 異厚超晶格 43
4-2 矽/鍺超晶格薄膜 44
4-2-1 材料參數 45
4-2-2 等厚超晶格 45
4-2-3 異厚超晶格 46
4-3 溫度記憶效果 47
4-3-1 完全亂反射介面 48
4-3-2 完全鏡反射介面 49
第五章 結論與未來展望 51
5-1 基本假設 51
5-2 結論 52
5-3 未來展望 53
參考文獻 54
dc.language.isozh-TW
dc.subject超晶格薄膜zh_TW
dc.subject聲子波茲曼方程式zh_TW
dc.subject晶格熱傳導係數zh_TW
dc.subject溫度記憶效果zh_TW
dc.subjecttemperature-memory effecten
dc.subjectLattice thermal conductivityen
dc.subjectThin-film superlatticeen
dc.subjectPhonon Boltzmann transport equationen
dc.title超晶格薄膜平面方向晶格熱傳導係數之分析zh_TW
dc.titleThe analsis of in-plane lattice thermal conductivity of thin-film superlatticesen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李石頓,伍次寅,劉君愷
dc.subject.keyword超晶格薄膜,聲子波茲曼方程式,晶格熱傳導係數,溫度記憶效果,zh_TW
dc.subject.keywordThin-film superlattice,Phonon Boltzmann transport equation,Lattice thermal conductivity,temperature-memory effect,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2006-07-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved