Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33853
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 李明亭(Ming-Ting Lee) | |
dc.contributor.author | Shih-Hsun Chen | en |
dc.contributor.author | 陳世勳 | zh_TW |
dc.date.accessioned | 2021-06-13T05:47:28Z | - |
dc.date.available | 2007-07-28 | |
dc.date.copyright | 2006-07-28 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-10 | |
dc.identifier.citation | Akimov, S.S., and A.M. Belkin. 2001a. Cell-surface transglutaminase promotes fibronectin assembly via interaction with the gelatin-binding domain of fibronectin: a role in TGFbeta-dependent matrix deposition. J Cell Sci. 114:2989-3000.
Akimov, S.S., and A.M. Belkin. 2001b. Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood. 98:1567-76. Akimov, S.S., D. Krylov, L.F. Fleischman, and A.M. Belkin. 2000. Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin. J Cell Biol. 148:825-38. Akiyama, S.K., E. Hasegawa, T. Hasegawa, and K.M. Yamada. 1985. The interaction of fibronectin fragments with fibroblastic cells. J Biol Chem. 260:13256-60. Akiyama, S.K., K. Olden, and K.M. Yamada. 1995. Fibronectin and integrins in invasion and metastasis. Cancer Metastasis Rev. 14:173-89. Albini, A., Y. Iwamoto, H.K. Kleinman, G.R. Martin, S.A. Aaronson, J.M. Kozlowski, and R.N. McEwan. 1987. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 47:3239-45. Antonyak, M.A., C.J. McNeill, J.J. Wakshlag, J.E. Boehm, and R.A. Cerione. 2003. Activation of the Ras-ERK pathway inhibits retinoic acid-induced stimulation of tissue transglutaminase expression in NIH3T3 cells. J Biol Chem. 278:15859-66. Antonyak, M.A., U.S. Singh, D.A. Lee, J.E. Boehm, C. Combs, M.M. Zgola, R.L. Page, and R.A. Cerione. 2001. Effects of tissue transglutaminase on retinoic acid-induced cellular differentiation and protection against apoptosis. J Biol Chem. 276:33582-7. Aota, S., M. Nomizu, and K.M. Yamada. 1994. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem. 269:24756-61. Aplin, A.E., A.K. Howe, and R.L. Juliano. 1999. Cell adhesion molecules, signal transduction and cell growth. Curr Opin Cell Biol. 11:737-44. Armstrong, P.B., and M.T. Armstrong. 2000. Intercellular invasion and the organizational stability of tissues: a role for fibronectin. Biochim Biophys Acta. 1470:O9-20. Balklava, Z., E. Verderio, R. Collighan, S. Gross, J. Adams, and M. Griffin. 2002. Analysis of tissue transglutaminase function in the migration of Swiss 3T3 fibroblasts: the active-state conformation of the enzyme does not affect cell motility but is important for its secretion. J Biol Chem. 277:16567-75. Barnes, R.N., P.J. Bungay, B.M. Elliott, P.L. Walton, and M. Griffin. 1985. Alterations in the distribution and activity of transglutaminase during tumour growth and metastasis. Carcinogenesis. 6:459-63. Beninati, S., A. Abbruzzese, and M. Cardinali. 1993. Differences in the post-translational modification of proteins by polyamines between weakly and highly metastatic B16 melanoma cells. Int J Cancer. 53:792-7. Boehm, J.E., U. Singh, C. Combs, M.A. Antonyak, and R.A. Cerione. 2002. Tissue transglutaminase protects against apoptosis by modifying the tumor suppressor protein p110 Rb. J Biol Chem. 277:20127-30. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248-54. Brenner, W., S. Gross, F. Steinbach, S. Horn, R. Hohenfellner, and J.W. Thuroff. 2000. Differential inhibition of renal cancer cell invasion mediated by fibronectin, collagen IV and laminin. Cancer Lett. 155:199-205. Brooks, P.C., R.A. Clark, and D.A. Cheresh. 1994. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 264:569-71. Brooks, P.C., S. Stromblad, L.C. Sanders, T.L. von Schalscha, R.T. Aimes, W.G. Stetler-Stevenson, J.P. Quigley, and D.A. Cheresh. 1996. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell. 85:683-93. Cary, L.A., J.F. Chang, and J.L. Guan. 1996. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J Cell Sci. 109 ( Pt 7):1787-94. Chandrasekar, B., S. Mummidi, L. Mahimainathan, D.N. Patel, S.R. Bailey, S.Z. Imam, W.C. Greene, and A.J. Valante. 2006. Interleukin-18-induced human coronary artery smooth muscle cell migration is dependent on NF-kappa B- and AP-1-mediated matrix metalloproteinase-9 expression, and is inhibited by atorvastatin. J Biol Chem. Chen, Q., M.S. Kinch, T.H. Lin, K. Burridge, and R.L. Juliano. 1994. Integrin-mediated cell adhesion activates mitogen-activated protein kinases. J Biol Chem. 269:26602-5. Clark, E.A., T.R. Golub, E.S. Lander, and R.O. Hynes. 2000. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 406:532-5. Collier, I.E., S.M. Wilhelm, A.Z. Eisen, B.L. Marmer, G.A. Grant, J.L. Seltzer, A. Kronberger, C.S. He, E.A. Bauer, and G.I. Goldberg. 1988. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem. 263:6579-87. De Laurenzi, V., and G. Melino. 2001. Gene disruption of tissue transglutaminase. Mol Cell Biol. 21:148-55. Demeter, A., I. Sziller, Z. Csapo, J. Olah, G. Keszler, A. Jeney, Z. Papp, and M. Staub. 2005. Molecular prognostic markers in recurrent and in non-recurrent epithelial ovarian cancer. Anticancer Res. 25:2885-9. Egeblad, M., and Z. Werb. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2:161-74. Fesus, L., and M. Piacentini. 2002. Transglutaminase 2: an enigmatic enzyme with diverse functions. Trends Biochem Sci. 27:534-9. Fidler, I.J., and M.L. Kripke. 1977. Metastasis results from preexisting variant cells within a malignant tumor. Science. 197:893-5. Folk, J.E., and J.S. Finlayson. 1977. The epsilon-(gamma-glutamyl)lysine crosslink and the catalytic role of transglutaminases. Adv Protein Chem. 31:1-133. Frisch, S.M., K. Vuori, E. Ruoslahti, and P.Y. Chan-Hui. 1996. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol. 134:793-9. Gabarra-Niecko, V., M.D. Schaller, and J.M. Dunty. 2003. FAK regulates biological processes important for the pathogenesis of cancer. Cancer Metastasis Rev. 22:359-74. Gaudry, C.A., E. Verderio, R.A. Jones, C. Smith, and M. Griffin. 1999. Tissue transglutaminase is an important player at the surface of human endothelial cells: evidence for its externalization and its colocalization with the beta(1) integrin. Exp Cell Res. 252:104-13. Gehlsen, K.R., W.S. Argraves, M.D. Pierschbacher, and E. Ruoslahti. 1988. Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides. J Cell Biol. 106:925-30. Giancotti, F.G., and E. Ruoslahti. 1999. Integrin signaling. Science. 285:1028-32. Grenard, P., M.K. Bates, and D. Aeschlimann. 2001. Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J Biol Chem. 276:33066-78. Griffin, M., R. Casadio, and C.M. Bergamini. 2002. Transglutaminases: nature's biological glues. Biochem J. 368:377-96. Guo, W., and F.G. Giancotti. 2004. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 5:816-26. Hanada, M., K. Tanaka, Y. Matsumoto, F. Nakatani, R. Sakimura, T. Matsunobu, X. Li, T. Okada, T. Nakamura, M. Takasaki, and Y. Iwamoto. 2005. Focal adhesion kinase is activated in invading fibrosarcoma cells and regulates metastasis. Clin Exp Metastasis. 22:485-94. Haroon, Z.A., T.S. Lai, J.M. Hettasch, R.A. Lindberg, M.W. Dewhirst, and C.S. Greenberg. 1999. Tissue transglutaminase is expressed as a host response to tumor invasion and inhibits tumor growth. Lab Invest. 79:1679-86. Hayman, E.G., M.D. Pierschbacher, and E. Ruoslahti. 1985. Detachment of cells from culture substrate by soluble fibronectin peptides. J Cell Biol. 100:1948-54. He, C. 1996. Molecular mechanism of transcriptional activation of human gelatinase B by proximal promoter. Cancer Lett. 106:185-91. Hegele, A., A. Heidenreich, Z. Varga, R. von Knobloch, P. Olbert, J. Kropf, and R. Hofmann. 2003. Cellular fibronectin in patients with transitional cell carcinoma of the bladder. Urol Res. 30:363-6. Herman, J.F., L.S. Mangala, and K. Mehta. 2006. Implications of increased tissue transglutaminase (TG2) expression in drug-resistant breast cancer (MCF-7) cells. Oncogene. Heussen, C., and E.B. Dowdle. 1980. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem. 102:196-202. Hood, J.D., and D.A. Cheresh. 2002. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2:91-100. Humphries, M.J., A. Komoriya, S.K. Akiyama, K. Olden, and K.M. Yamada. 1987. Identification of two distinct regions of the type III connecting segment of human plasma fibronectin that promote cell type-specific adhesion. J Biol Chem. 262:6886-92. Huttenlocher, A., M.H. Ginsberg, and A.F. Horwitz. 1996. Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. J Cell Biol. 134:1551-62. Hwang, K.C., C.D. Gray, N. Sivasubramanian, and M.J. Im. 1995. Interaction site of GTP binding Gh (transglutaminase II) with phospholipase C. J Biol Chem. 270:27058-62. Hynes, R.O. 2003. Metastatic potential: generic predisposition of the primary tumor or rare, metastatic variants-or both? Cell. 113:821-3. Iismaa, S.E., M.J. Wu, N. Nanda, W.B. Church, and R.M. Graham. 2000. GTP binding and signaling by Gh/transglutaminase II involves distinct residues in a unique GTP-binding pocket. J Biol Chem. 275:18259-65. Ilic, D., Y. Furuta, S. Kanazawa, N. Takeda, K. Sobue, N. Nakatsuji, S. Nomura, J. Fujimoto, M. Okada, and T. Yamamoto. 1995. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature. 377:539-44. Isobe, T., H. Takahashi, S. Ueki, J. Takagi, and Y. Saito. 1999. Activity-independent cell adhesion to tissue-type transglutaminase is mediated by alpha4beta1 integrin. Eur J Cell Biol. 78:876-83. Jiang, D., W. Ying, Y. Lu, J. Wan, Y. Zhai, W. Liu, Y. Zhu, Z. Qiu, X. Qian, and F. He. 2003. Identification of metastasis-associated proteins by proteomic analysis and functional exploration of interleukin-18 in metastasis. Proteomics. 3:724-37. Johnson, T.S., C.R. Knight, S. el-Alaoui, S. Mian, R.C. Rees, V. Gentile, P.J. Davies, and M. Griffin. 1994. Transfection of tissue transglutaminase into a highly malignant hamster fibrosarcoma leads to a reduced incidence of primary tumour growth. Oncogene. 9:2935-42. Jones, R.A., B. Nicholas, S. Mian, P.J. Davies, and M. Griffin. 1997. Reduced expression of tissue transglutaminase in a human endothelial cell line leads to changes in cell spreading, cell adhesion and reduced polymerisation of fibronectin. J Cell Sci. 110 ( Pt 19):2461-72. Kang, S.K., J.Y. Lee, T.W. Chung, and C.H. Kim. 2004. Overexpression of transglutaminase 2 accelerates the erythroid differentiation of human chronic myelogenous leukemia K562 cell line through PI3K/Akt signaling pathway. FEBS Lett. 577:361-6. Kang, Y., P.M. Siegel, W. Shu, M. Drobnjak, S.M. Kakonen, C. Cordon-Cardo, T.A. Guise, and J. Massague. 2003. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 3:537-49. Kiosses, W.B., S.J. Shattil, N. Pampori, and M.A. Schwartz. 2001. Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat Cell Biol. 3:316-20. Knight, C.R., R.C. Rees, and M. Griffin. 1991. Apoptosis: a potential role for cytosolic transglutaminase and its importance in tumour progression. Biochim Biophys Acta. 1096:312-8. Kokoglu, E., S. Suer, E. Ozyurt, A. Siyahhan, and H. Sonmez. 1995. Plasma fibronectin and sialic acid levels in various types of human brain tumors. Cancer Biochem Biophys. 15:35-40. Komoriya, A., L.J. Green, M. Mervic, S.S. Yamada, K.M. Yamada, and M.J. Humphries. 1991. The minimal essential sequence for a major cell type-specific adhesion site (CS1) within the alternatively spliced type III connecting segment domain of fibronectin is leucine-aspartic acid-valine. J Biol Chem. 266:15075-9. Kornberg, L., H.S. Earp, J.T. Parsons, M. Schaller, and R.L. Juliano. 1992. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J Biol Chem. 267:23439-42. Kornblihtt, A.R., K. Vibe-Pedersen, and F.E. Baralle. 1984. Human fibronectin: cell specific alternative mRNA splicing generates polypeptide chains differing in the number of internal repeats. Nucleic Acids Res. 12:5853-68. Labat-Robert, J., P. Birembaut, J.J. Adnet, F. Mercantini, and L. Robert. 1980. Loss of fibronectin in human breast cancer. Cell Biol Int Rep. 4:609-16. Lee, J.W., Y. Hee Kim, H. Boong Park, L.H. Xu, W.G. Cance, J.A. Block, and S.P. Scully. 2003. The C-terminal domain of focal adhesion kinase reduces the tumor cell invasiveness in chondrosarcoma cell lines. J Orthop Res. 21:1071-80. Lentini, A., H.K. Kleinman, P. Mattioli, V. Autuori-Pezzoli, L. Nicolini, A. Pietrini, A. Abbruzzese, M. Cardinali, and S. Beninati. 1998. Inhibition of melanoma pulmonary metastasis by methylxanthines due to decreased invasion and proliferation. Melanoma Res. 8:131-7. Livant, D.L., R.K. Brabec, K. Kurachi, D.L. Allen, Y. Wu, R. Haaseth, P. Andrews, S.P. Ethier, and S. Markwart. 2000. The PHSRN sequence induces extracellular matrix invasion and accelerates wound healing in obese diabetic mice. J Clin Invest. 105:1537-45. Lorand, L., and R.M. Graham. 2003. Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol. 4:140-56. Mangala, L.S., and K. Mehta. 2005. Tissue transglutaminase (TG2) in cancer biology. Prog Exp Tumor Res. 38:125-38. Mehta, K. 1994. High levels of transglutaminase expression in doxorubicin-resistant human breast carcinoma cells. Int J Cancer. 58:400-6. Mehta, K., J. Fok, F.R. Miller, D. Koul, and A.A. Sahin. 2004. Prognostic significance of tissue transglutaminase in drug resistant and metastatic breast cancer. Clin Cancer Res. 10:8068-76. Melino, G., M. Annicchiarico-Petruzzelli, L. Piredda, E. Candi, V. Gentile, P.J. Davies, and M. Piacentini. 1994. Tissue transglutaminase and apoptosis: sense and antisense transfection studies with human neuroblastoma cells. Mol Cell Biol. 14:6584-96. Mizejewski, G.J. 1999. Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Biol Med. 222:124-38. Moro, L., M. Colombi, M.P. Molinari Tosatti, and S. Barlati. 1992. Study of fibronectin and mRNA in human laryngeal and ectocervical carcinomas by in situ hybridization and image analysis. Int J Cancer. 51:692-7. Mosesson, M.W., and D.L. Amrani. 1980. The structure and biologic activities of plasma fibronectin. Blood. 56:145-58. Mosher, D.F., J. Sottile, C. Wu, and J.A. McDonald. 1992. Assembly of extracellular matrix. Curr Opin Cell Biol. 4:810-8. Murthy, S.N., S. Iismaa, G. Begg, D.M. Freymann, R.M. Graham, and L. Lorand. 2002. Conserved tryptophan in the core domain of transglutaminase is essential for catalytic activity. Proc Natl Acad Sci U S A. 99:2738-42. Nagy, L., V.A. Thomazy, M.M. Saydak, J.P. Stein, and P.J. Davies. 1997. The promoter of the mouse tissue transglutaminase gene directs tissue-specific, retinoid-regulated and apoptosis-linked expression. Cell Death Differ. 4:534-47. Nakaoka, H., D.M. Perez, K.J. Baek, T. Das, A. Husain, K. Misono, M.J. Im, and R.M. Graham. 1994. Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science. 264:1593-6. Nanda, N., S.E. Iismaa, W.A. Owens, A. Husain, F. Mackay, and R.M. Graham. 2001. Targeted inactivation of Gh/tissue transglutaminase II. J Biol Chem. 276:20673-8. Nemes, Z., Jr., R.R. Friis, D. Aeschlimann, S. Saurer, M. Paulsson, and L. Fesus. 1996. Expression and activation of tissue transglutaminase in apoptotic cells of involuting rodent mammary tissue. Eur J Cell Biol. 70:125-33. Owen, J.D., P.J. Ruest, D.W. Fry, and S.K. Hanks. 1999. Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk2. Mol Cell Biol. 19:4806-18. Owens, L.V., L. Xu, R.J. Craven, G.A. Dent, T.M. Weiner, L. Kornberg, E.T. Liu, and W.G. Cance. 1995. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res. 55:2752-5. Pampori, N., T. Hato, D.G. Stupack, S. Aidoudi, D.A. Cheresh, G.R. Nemerow, and S.J. Shattil. 1999. Mechanisms and consequences of affinity modulation of integrin alpha(V)beta(3) detected with a novel patch-engineered monovalent ligand. J Biol Chem. 274:21609-16. Parameswaran, K.N., X.F. Cheng, E.C. Chen, P.T. Velasco, J.H. Wilson, and L. Lorand. 1997. Hydrolysis of gamma:epsilon isopeptides by cytosolic transglutaminases and by coagulation factor XIIIa. J Biol Chem. 272:10311-7. Perou, C.M., T. Sorlie, M.B. Eisen, M. van de Rijn, S.S. Jeffrey, C.A. Rees, J.R. Pollack, D.T. Ross, H. Johnsen, L.A. Akslen, O. Fluge, A. Pergamenschikov, C. Williams, S.X. Zhu, P.E. Lonning, A.L. Borresen-Dale, P.O. Brown, and D. Botstein. 2000. Molecular portraits of human breast tumours. Nature. 406:747-52. Pierschbacher, M.D., and E. Ruoslahti. 1984. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 309:30-3. Piredda, L., M.G. Farrace, M. Lo Bello, W. Malorni, G. Melino, R. Petruzzelli, and M. Piacentini. 1999. Identification of 'tissue' transglutaminase binding proteins in neural cells committed to apoptosis. Faseb J. 13:355-64. Radek, J.T., J.M. Jeong, S.N. Murthy, K.C. Ingham, and L. Lorand. 1993. Affinity of human erythrocyte transglutaminase for a 42-kDa gelatin-binding fragment of human plasma fibronectin. Proc Natl Acad Sci U S A. 90:3152-6. Renshaw, M.W., L.S. Price, and M.A. Schwartz. 1999. Focal adhesion kinase mediates the integrin signaling requirement for growth factor activation of MAP kinase. J Cell Biol. 147:611-8. Ria, R., A. Vacca, D. Ribatti, F. Di Raimondo, F. Merchionne, and F. Dammacco. 2002. Alpha(v)beta(3) integrin engagement enhances cell invasiveness in human multiple myeloma. Haematologica. 87:836-45. Richardson, A., R.K. Malik, J.D. Hildebrand, and J.T. Parsons. 1997. Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of Src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation. Mol Cell Biol. 17:6906-14. Ryu, S., S. Jimi, Y. Eura, T. Kato, and S. Takebayashi. 1999. Strong intracellular and negative peripheral expression of fibronectin in tumor cells contribute to invasion and metastasis in papillary thyroid carcinoma. Cancer Lett. 146:103-9. Sarkar, N.K., D.D. Clarke, and H. Waelsch. 1957. An enzymically catalyzed incorporation of amines into proteins. Biochim Biophys Acta. 25:451-2. Sastry, S.K., and K. Burridge. 2000. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp Cell Res. 261:25-36. Sato, H., and M. Seiki. 1993. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene. 8:395-405. Schlaepfer, D.D., C.R. Hauck, and D.J. Sieg. 1999. Signaling through focal adhesion kinase. Prog Biophys Mol Biol. 71:435-78. Shibata, K., F. Kikkawa, A. Nawa, N. Suganuma, and M. Hamaguchi. 1997. Fibronectin secretion from human peritoneal tissue induces Mr 92,000 type IV collagenase expression and invasion in ovarian cancer cell lines. Cancer Res. 57:5416-20. Sieg, D.J., C.R. Hauck, and D.D. Schlaepfer. 1999. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J Cell Sci. 112 ( Pt 16):2677-91. Small, J.V., T. Stradal, E. Vignal, and K. Rottner. 2002. The lamellipodium: where motility begins. Trends Cell Biol. 12:112-20. Soloway, P.D., C.M. Alexander, Z. Werb, and R. Jaenisch. 1996. Targeted mutagenesis of Timp-1 reveals that lung tumor invasion is influenced by Timp-1 genotype of the tumor but not by that of the host. Oncogene. 13:2307-14. Sorlie, T., C.M. Perou, R. Tibshirani, T. Aas, S. Geisler, H. Johnsen, T. Hastie, M.B. Eisen, M. van de Rijn, S.S. Jeffrey, T. Thorsen, H. Quist, J.C. Matese, P.O. Brown, D. Botstein, P. Eystein Lonning, and A.L. Borresen-Dale. 2001. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 98:10869-74. Sporn, M.B. 1996. The war on cancer. Lancet. 347:1377-81. Stephens, P., P. Grenard, P. Aeschlimann, M. Langley, E. Blain, R. Errington, D. Kipling, D. Thomas, and D. Aeschlimann. 2004. Crosslinking and G-protein functions of transglutaminase 2 contribute differentially to fibroblast wound healing responses. J Cell Sci. 117:3389-403. Sternlicht, M.D., and Z. Werb. 2001. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 17:463-516. Stetler-Stevenson, W.G., S. Aznavoorian, and L.A. Liotta. 1993. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol. 9:541-73. Suer, S., H. Sonmez, I. Karaaslan, H. Baloglu, and E. Kokoglu. 1996. Tissue sialic acid and fibronectin levels in human prostatic cancer. Cancer Lett. 99:135-7. Sugihara, K., T. Saito, M. Okadome, K. Sonoda, H. Kobayashi, T. Kamura, N. Tsukamoto, and H. Nakano. 1994. The promotion of invasion through the basement membrane of cervical carcinoma cells by fibronectin as a chemoattractant. Cancer Lett. 79:167-73. Thiery, J.P. 2002. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2:442-54. Turner, P.M., and L. Lorand. 1989. Complexation of fibronectin with tissue transglutaminase. Biochemistry. 28:628-35. van 't Veer, L.J., H. Dai, M.J. van de Vijver, Y.D. He, A.A. Hart, M. Mao, H.L. Peterse, K. van der Kooy, M.J. Marton, A.T. Witteveen, G.J. Schreiber, R.M. Kerkhoven, C. Roberts, P.S. Linsley, R. Bernards, and S.H. Friend. 2002. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 415:530-6. van der Flier, A., and A. Sonnenberg. 2001. Function and interactions of integrins. Cell Tissue Res. 305:285-98. van Groningen, J.J., S.L. Klink, H.P. Bloemers, and G.W. Swart. 1995. Expression of tissue-type transglutaminase correlates positively with metastatic properties of human melanoma cell lines. Int J Cancer. 60:383-7. Verderio, E., B. Nicholas, S. Gross, and M. Griffin. 1998. Regulated expression of tissue transglutaminase in Swiss 3T3 fibroblasts: effects on the processing of fibronectin, cell attachment, and cell death. Exp Cell Res. 239:119-38. Webb, D.J., J.T. Parsons, and A.F. Horwitz. 2002. Adhesion assembly, disassembly and turnover in migrating cells -- over and over and over again. Nat Cell Biol. 4:E97-100. Weiner, T.M., E.T. Liu, R.J. Craven, and W.G. Cance. 1993. Expression of focal adhesion kinase gene and invasive cancer. Lancet. 342:1024-5. Werb, Z. 1997. ECM and cell surface proteolysis: regulating cellular ecology. Cell. 91:439-42. Werb, Z., P.M. Tremble, O. Behrendtsen, E. Crowley, and C.H. Damsky. 1989. Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol. 109:877-89. Westermarck, J., and V.M. Kahari. 1999. Regulation of matrix metalloproteinase expression in tumor invasion. Faseb J. 13:781-92. Wyckoff, J.B., J.E. Segall, and J.S. Condeelis. 2000. The collection of the motile population of cells from a living tumor. Cancer Res. 60:5401-4. Yamada, K.M., and D.W. Kennedy. 1984. Dualistic nature of adhesive protein function: fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function. J Cell Biol. 99:29-36. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33853 | - |
dc.description.abstract | 癌細胞的入侵與轉移,始終是治癒癌症最大的難題。之前文獻顯示,腫瘤的Fibronectin (FN) 表現量與癌細胞入侵能力及Matrix Mmetalloproteinases (MMPs) 的釋放量有關。為了癌症轉移的研究,實驗室已建立一套完整系統: 利用Boyden chamber assay從母代A431癌細胞 (A431P) 經三次循環篩選出更具入侵能力的細胞株 (A431III)。同時A431III也被發現會分泌更多的MMP-9以及具有較強的移動、貼附與延展能力。然而,這些特性增強的原因仍處於未知的階段。
此篇研究,我們觀察到A431III內生性FN的表現量與細胞外分泌量有大量提高的趨勢。利用siRNA技術來抑制FN表現量的情況下,顯示A431III的高入侵能力有完全被抑制的現象,其傷口癒合能力也有明顯減弱的趨勢。 Tissue transglutaminase (TG2) 傳統被認為是催化蛋白與蛋白間連接的酵素,最近被發現與腫瘤生成有相關性。2000年一篇報告顯示,TG2被發現具有另一項新的功能: 在細胞外扮演FN與Integrin相互連結的一個重要酵素。因此我們想進一步去研究A431P與A431III中TG2的表現量以及TG2與FN、Integrin的作用能力是否有所差異。實驗顯示,與大部分報告指出TG2隨著癌症轉移惡化而表現量減少的結果相反,TG2在較強入侵力A431III的表現量約是A431P的四倍。此外,TG2、FN及Integrin三者間的相互作用程度,在A431III中都比A431P要高出許多。利用siRNA來抑制TG2表現量的情況下,我們發現A431III原本較高的MMP-9分泌量、FN-Integrin作用力、FAK phosphorylation以及入侵、貼附、延展、移動能力都有降低的趨勢,甚至降到A431P的程度。 綜合以上結果,我們推測: A431III中TG2上升所增強的FN-Integrin交互作用,會活化FAK等相關的訊息傳遞,促使細胞入侵能力的上升。此外也顯示,本實驗室利用Boyden chamber assay所篩選出更具入侵力的癌細胞株,將會是一個研究癌症轉移相關機制的有利工具與系統。 | zh_TW |
dc.description.abstract | The development of invasion and metastasis is a major impediment to the successful treatment of cancer. An increase in fibronectin (FN) expression in human tumor has been shown to be correlated with a high potential of tumor cell invasion and elevated matrix metalloproteinases (MMPs) secretion. We have previously shown that human A431 III sub-line isolated from the parental A431 cell (A431P) using Boyden chamber secreted higher levels of MMP-9 than A431P. The A431III cells exhibit elevated migratory, adherent, and spreading characteristics. However, the molecular mechanisms of highly metastatic features in A431III cells have not been fully understood. In this study, we observed that the amounts of endogenous FN in A431III sub-line were significantly higher than those in A431P cells. Moreover, we found that knock-down of endogenous FN by siRNA resulted in totally inhibition of the invasive potential and decreased the ability of wound healing in A431III cells. Since tissue transglutaminase (TG2) has been found to play an important role in tumor progression and could also act as a coreceptor for integrin-mediated binding of cells to FN, we further planed to investigate the roles of TG2 and its relationship with integrins in the potentials of cancer cell invasion and metastasis in highly invasive A431 cancer cell models. On contrary to other previous studies that showed that a decrease of TG2 expression and activity was accompanied by the increasing metastatic potential. Interestingly, our study showed that TG2 levels were significantly increased in A431III cells compared to A431P cells. Furthermore, the interactions of FN, TG2, and integrin β1/β3 were markedly higher in A431III than in A431P cells. After the knockdown of TG2, the invasive ability, MMP-9 secretion, the interaction between FN and integrin β1, FAK phosphorylation, and highly metastasis-related appearances of A431III were decreased to the levels as that of A431P cells. Thus, our results indicate that increased expression of TG2 could enhance association of FN with integrins and trigger integrin-mediated outside-in signaling, at least in part leading to enhancement of the metastatic potentials in A431III cells. Our data suggest that the highly invasive A431III sub-line would be an excellent model for investigating the mechanism of tumor metastasis through FN and TG2-mediated signaling. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T05:47:28Z (GMT). No. of bitstreams: 1 ntu-95-R93b46019-1.pdf: 2434895 bytes, checksum: 09c4a0587c375864dd626ca2bcd69074 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | Contents I
Figure contents IV --------------------------------------------------------------------------------------- 中文摘要 1 Abstract 2 --------------------------------------------------------------------------------------- Introduction 4 Invasion and metastasis of cancer cells 4 The role of Matrix Metalloproteinases in invasion and metastasis 5 Integrins signaling in cancer invasion and metastasis 6 The role of Focal adhesion kinase (FAK) in integrin-mediated signaling 8 The role of Fibronectin in cancer 9 The role of Tissue Transglutaminase in cancer biology 12 The model of metastatic variants selected from primary tumor 15 --------------------------------------------------------------------------------------- Materials and methods 26 Materials 26 Determination of protein concentration of cell lysates, membrane fraction, and conditioned media 26 Western blot 27 Detection of extracellular transglutaminase activity 27 Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) 28 Transfection of siRNAs 29 Cell growth experiments 29 In vitro invasion assay 30 Migration assay 30 Cell attachment and spreading assay 31 Wound-healing assay 31 Gelatin zymography 31 Co-immunoprecipitation 32 Immunofluorescence and confocal microscopy 33 Statistical analysis 33 --------------------------------------------------------------------------------------- Results 34 Up-regulated FN expression was found in highly invasive A431 sub-line 34 Effect of FN on the invasiveness of A431P and A431III cells 34 Induction of MMP-9 by endogenous FN may lead to highly invasiveness of A431III 35 Increased mobility of more invasive A431 was highly correlated with up-regulated endogenous FN expression 36 The increased interaction of integrin, FN, and TG2 was found in more invasive A431 cells 37 Colocalization of TG2 and FN in A431P and A431III cells 38 TG2 expression increased in highly invasive A431III sub-line 38 Increased TG2 expression in A431III enhanced cell migratory ability 39 Increased TG2 expression in A431III modulated cell adhesion and spreading 40 TG2 promoted tumor cell invasive potential 40 Increased MMP-9 secretion of A431III was correlated with an increased TG2 expression in A431III cells 41 An increase of surface TG2 enhanced integrin-FN interaction, FAK phosphorylation, and a metastatic potential in A431 sub-line 41 Effect of TG2 and Fn siRNAs on the growth of A431P and A431III 42 --------------------------------------------------------------------------------------- Discussion 55 --------------------------------------------------------------------------------------- Reference 62 Figure contents Fig. I A scheme of metastatic cascade 17 Fig. II A scheme of tumor progression 17 Fig. III The protein structure of MMPs 19 Fig. IV Invasion and migration regulated by integrin-mediated signals 21 Fig. V Three types of modules in FN structure 21 Fig. VI A scheme of FN domain 22 Fig. VII The model of FN-integrin interaction 22 Fig. VIII A scheme of TG2 diverse functions of TG2 23 Fig. IX The model of TG2 association with integrin and FN 23 Fig. X Four distinct domains of TG2 24 Fig. XI TG2 involvement in FN-integrin mediated signaling 25 Fig. XII The development of metastatic potential within primary tumors 25 Table I The Matrix Metalloproteinase family 18 Table II The Family of MMPs 20 Table III Various integrin heterocomplexes in human tumor cells 20 Table IV The family of TGs 24 Fig. 1 Expression and secretion of FN in A431P and A431III cells 43 Fig. 2 The amounts of endogenous FN might be responsible for the invasiveness of A431 cells through MMPs activation. 44 Fig. 3 Increase of FN in highly invasive A431 cells may enhance their migratory ability 45 Fig. 4 The increased interaction of integrin, FN, and TG2 was found in A431III cells. 46 Fig. 5 Localization of TG2 with FN on the surface of A431P and A431III cells 47 Fig. 6 Expression and activity of TG2 in A431P and A431III cells 48 Fig. 7 Elevated mobility in A431III was correlated with increased TG2 expression 49 Fig. 8 Higher attachment and spreading ability in more invasive A431 was mediated by TG2 50 Fig. 9 Highly invasive ability of A431III may be attributed to increased TG2 expression 51 Fig. 10 Higher MMP-9 secretion of A431III was correlated with increased TG2 expression 52 Fig. 11 The higher interaction between FN and integrin and elevated FAK phosphorylation might be mediated by TG2 53 Fig. 12 The proposed model for functional roles of TG2 and Fn in the promotion of A431 cancer cell invasion and migration. 54 | |
dc.language.iso | en | |
dc.title | A431癌細胞之纖維連接蛋白素及轉麩胺酵素2表現量
與細胞轉移潛力之關係探討 | zh_TW |
dc.title | Increased expression of Fibronectin and Tissue Transglutaminase enhance metastatic potential in highly invasive A431 sub-line | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃銓珍(Chang-Jen Huang),黃彬彬(Ping-Ping Huang),黃娟娟(Jiuan-Jiuan Hwang),李明學(Ming-Shyue Lee) | |
dc.subject.keyword | 癌症轉移,纖維連接蛋白素,轉麩胺酵素2, | zh_TW |
dc.subject.keyword | A431,Fibronectin,Tissue Transglutaminase, | en |
dc.relation.page | 76 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-12 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
Appears in Collections: | 生化科學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-95-1.pdf Restricted Access | 2.38 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.