請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33840完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光(Chih-Kung Lee) | |
| dc.contributor.author | Ying-Hua Chen | en |
| dc.contributor.author | 陳盈樺 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:47:12Z | - |
| dc.date.available | 2011-07-28 | |
| dc.date.copyright | 2011-07-28 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-26 | |
| dc.identifier.citation | [1] N. K. Chaki, and K. Vijayamohanan, “Self-assembled monolayers as a tunable platform for biosensor applications,” Biosensors & Bioelectronics, vol. 17, no. 1-2, pp. 1-12, Jan, 2002.
[2] C. S. Chen, K. N. Chang, Y. H. Chen et al., “Development of a label-free impedance biosensor for detection of antibody-antigen interactions based on a novel conductive linker,” Biosensors & Bioelectronics, vol. 26, no. 6, pp. 3072-3076, Feb. [3] H. O. Finklea, S. Avery, M. Lynch et al., “Blocking orienteed monolayers of alkyl mercaptans on gold electrodes” Langmuir, vol. 3, no. 3, pp. 409-413, 1987. [4] F. Darain, D. S. Park, J. S. Park et al., “Development of an immunosensor for the detection of vitellogenin using impedance spectroscopy,” Biosensors & Bioelectronics, vol. 19, no. 10, pp. 1245-1252, 2004. [5] O. Paenke, T. Balkenhohl, J. Kafka et al., 'Impedance spectroscopy and biosensing,' Biosensing for the 21st Century, Advances in Biochemical Engineering / Biotechnology, pp. 195-237, Berlin: Springer-Verlag Berlin, 2008. [6] J. S. Daniels, and N. Pourmand, “Label-free impedance biosensors: Opportunities and challenges,” Electroanalysis, vol. 19, no. 12, pp. 1239-1257, Jun, 2007. [7] E. Katz, and I. Willner, “Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-Sensors, and enzyme biosensors,” Electroanalysis, vol. 15, no. 11, pp. 913-947, 2003. [8] E. Komarova, K. Reber, M. Aldissi et al., “New multispecific array as a tool for electrochemical impedance spectroscopy-based biosensing,” Biosensors & Bioelectronics, vol. 25, no. 6, pp. 1389-1394. [9] A. E. Radi, X. Munoz-Berbel, V. Lates et al., “Label-free impedimetric immunosensor for sensitive detection of ochratoxin A,” Biosensors & Bioelectronics, vol. 24, no. 7, pp. 1888-1892, 2009. [10] C. Berggren, B. Bjarnason, and G. Johansson, “Capacitive biosensors,” Electroanalysis, vol. 13, no. 3, pp. 173-180, 2001. [11] I. O. K'Owino, and O. A. Sadik, “Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring,” Electroanalysis, vol. 17, no. 23, pp. 2101-2113, 2005. [12] D. D. Macdonald, “Reflections on the history of electrochemical impedance spectroscopy,” Electrochimica Acta, vol. 51, no. 8-9, pp. 1376-1388, 2006. [13] O. Paenke, T. Balkenhohl, J. Kafka et al., “Impedance spectroscopy and biosensing,” Biosensing for the 21st Century, vol. 109, pp. 195-237, 2008. [14] J. B. Beusink, A. M. C. Lokate, G. A. J. Besselink et al., “Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays,” Biosensors & Bioelectronics, vol. 23, no. 6, pp. 839-844, 2008. [15] G. H. Cross, A. A. Reeves, S. Brand et al., “A new quantitative optical biosensor for protein characterisation,” Biosensors & Bioelectronics, vol. 19, no. 4, pp. 383-390, 2003. [16] G. H. Cross, A. Reeves, S. Brand et al., “The metrics of surface adsorbed small molecules on the Young's fringe dual-slab waveguide interferometer,” Journal of Physics D-Applied Physics, vol. 37, no. 1, pp. 74-80, Jan, 2004. [17] I. Lundstrom, “REAL-TIME BIOSPECIFIC INTERACTION ANALYSIS,” Biosensors & Bioelectronics, vol. 9, no. 9-10, pp. 725-736, 1994. [18] J. Melendez, R. Carr, D. Bartholomew et al., “Development of a surface plasmon resonance sensor for commercial applications,” Sensors and Actuators B-Chemical, vol. 39, no. 1-3, pp. 375-379, 1997. [19] X. Q. Cui, R. J. Pei, X. Z. Wang et al., “Layer-by-layer assembly of multilayer films composed of avidin and biotin-labeled antibody for immunosensing,” Biosensors & Bioelectronics, vol. 18, no. 1, pp. 59-67, 2003. [20] D. J. Oshannessy, M. Brighamburke, and K. Peck, “IMMOBILIZATION CHEMISTRIES SUITABLE FOR USE IN THE BIACORE SURFACE-PLASMON RESONANCE DETECTOR,” Analytical Biochemistry, vol. 205, no. 1, pp. 132-136, 1992. [21] M. Ben Khalifa, L. Choulier, H. Lortat-Jacob et al., “BIACORE data processing: An evaluation of the global fitting procedure,” Analytical Biochemistry, vol. 293, no. 2, pp. 194-203, 2001. [22] J. Homola, “Present and future of surface plasmon resonance biosensors,” Analytical and Bioanalytical Chemistry, vol. 377, no. 3, pp. 528-539, 2003. [23] X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosensors & Bioelectronics, vol. 23, pp. 151-160, 2007. [24] S. M. Lin, C. K. Lee, Y. M. Wang et al., “Measurement of dimensions of pentagonal doughnut-shaped C-reactive protein using an atomic force microscope and a dual polarisation interferometric biosensor,” Biosensors & Bioelectronics, vol. 22, no. 2, pp. 323-327, 2006. [25] M. J. Swann, L. L. Peel, S. Carrington et al., “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Analytical Biochemistry, vol. 329, no. 2, pp. 190-198, 2004. [26] N. J. Freeman, L. L. Peel, M. J. Swann et al., “Real time, high resolution studies of protein adsorption and structure at the solid-liquid interface using dual polarization interferometry,” Journal of Physics-Condensed Matter, vol. 16, no. 26, pp. S2493-S2496, 2004. [27] S. M. Lin, C. K. Lee, Y. H. Lin et al., “Homopolyvalent antibody-antigen interaction kinetic studies with use of a dual-polarization interferometric biosensor,” Biosensors & Bioelectronics, vol. 22, no. 5, pp. 715-721, 2006. [28] C. Ayela, F. Vandevelde, D. Lagrange et al., “Combining resonant piezoelectric micromembranes with molecularly imprinted polymers,” Angewandte Chemie-International Edition, vol. 46, no. 48, pp. 9271-9274, 2007. [29] X. D. Su, Y. J. Wu, and W. Knoll, “Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization,” Biosensors & Bioelectronics, vol. 21, no. 5, pp. 719-726, Nov, 2005. [30] F. Huber, M. Hegner, C. Gerber et al., “Label free analysis of transcription factors using microcantilever arrays,” Biosensors & Bioelectronics, vol. 21, no. 8, pp. 1599-1605, Feb, 2006. [31] D. R. Thevenot, K. Toth, R. A. Durst et al., “Electrochemical biosensors: Recommended definitions and classification,” Analytical Letters, vol. 34, no. 5, pp. 635-659, 2001. [32] L. A. Bumm, J. J. Arnold, T. D. Dunbar et al., “Electron transfer through organic molecules,” Journal of Physical Chemistry B, vol. 103, no. 38, pp. 8122-8127, Sep, 1999. [33] M. L. Chabinyc, X. X. Chen, R. E. Holmlin et al., “Molecular rectification in a metal-insulator-metal junction based on self-assembled monolayers,” Journal of the American Chemical Society, vol. 124, no. 39, pp. 11730-11736, 2002. [34] M. A. Rampi, and G. M. Whitesides, “A versatile experimental approach for understanding electron transport through organic materials,” Chemical Physics, vol. 281, no. 2-3, pp. 373-391, 2002. [35] D. J. Wold, and C. D. Frisbie, “Fabrication and characterization of metal-molecule-metal junctions by conducting probe atomic force microscopy,” Journal of the American Chemical Society, vol. 123, no. 23, pp. 5549-5556, 2001. [36] A. J. Bard, and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2001. [37] C.-S. Chen, “Development of a Label-Free Impedance Biosensor for Detection of Antibody-Antigen Interactions Based on a Novel Conductive Linker,” 2011. [38] P. Todd, and J. Pellegrino, “Electrokinetic analyzers,” Separation and Purification Methods, vol. 29, no. 1, pp. 149-169, 2000. [39] N. A. K. a. S. Wang, Luminescence of Nanoparticle-Labeled Antibodies and Antigens, 2004 [40] http://www.amplegoal.com.tw/amplenet_product_tip_ns_PPP_CONT.html. [41] J. F. Smalley, S. W. Feldberg, C. E. D. Chidsey et al., “THE KINETICS OF ELECTRON-TRANSFER THROUGH FERROCENE-TERMINATED ALKANETHIOL MONOLAYERS ON GOLD,” Journal of Physical Chemistry, vol. 99, no. 35, pp. 13141-13149, 1995. [42] C. Miller, P. Cuendet, and M. Gratzel, “ADSORBED OMEGA-HYDROXY THIOL MONOLAYERS ON GOLD ELECTRODES - EVIDENCE FOR ELECTRON-TUNNELING TO REDOX SPECIES IN SOLUTION,” Journal of Physical Chemistry, vol. 95, no. 2, pp. 877-886, 1991. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33840 | - |
| dc.description.abstract | 近幾十年來,電化學阻抗分析頻譜已被廣泛的應用於多種層面,其中生醫感測器為其重要應用之一。於電化學式生醫感測器之量測中,電極表面的修飾與性質為一項影響阻抗非常重要的因素。為了進一步分析量測所得的電化學阻抗,我們使用一等效電路(Randles)將此電化學阻抗分成溶液電阻、電雙層電容、Warburg阻抗與電荷轉移阻抗。在這四項等效電路元件中,電荷轉移阻抗的變化為造成阻抗變化的最主要因素。因此為改善生醫感測器之效能,我們必須了解此電荷轉移阻抗變化的機制。雖然有多篇文獻指出空間障礙與靜電力的影響為改變電荷轉移阻抗的機制的兩項主要因素,但此兩種因素對電荷轉移阻抗影響的程度仍需要更進一步的研究。於此,我們使用導電式原子力學顯微鏡、界達電位(zeta potential)量測儀與電化學阻抗量測法為工具,對此兩種因素進行評估。於本文中,我們使用了七種具導電性的鏈結分子與一個傳統的長碳鏈分子。從我們的實驗結果中可以發現,電荷轉移阻抗與分子阻抗呈一對數關係,而電荷轉移阻抗與電極表面的界達電位呈一指數關係。這個結果說明了空間障礙所造成的阻抗效應遠比靜電力所造成的阻抗效應來的小。
藉由了解此電荷轉移阻抗轉移機制,我們得以設計出一低阻抗之鏈結分子。於本文中,我們利用對此機制的了解,找出一鏈結分子(ATP)不但具有高導電性,並在我們的量測環境中有具有帶正電吸引氧化還原對的效果。藉由使用此導電性鏈結分子,我們得以放大量測到的訊號並增加感測器的靈敏度。也因此,我們能夠利用一個較為簡化的電路量測出感測訊號。此研究有助於電化學式生醫感測器於定點照護(point-of-care)上的發展。 | zh_TW |
| dc.description.abstract | Electrochemical impedance spectroscopy (EIS) has been widely used in many applications such as biosensors over these decades. For the development of electrochemical sensor, the condition and property of electrode surface play a crucial role. The factors of how the surface property affects the electrochemical response have been studied for years; however, a more detailed research of the mechanism is still required. In a faradaic EIS, a Randles model is often used to fit the measured impedance data and the circuit element of charge transfer resistance (Rct) dedicates the most of the impedance change. Apart from the energy potential of the redox pair, steric hindrance and electrostatic force are the two well-known factors responsible for the Rct change. To further investigate how these two factors affect the Rct element, we used conductive atomic force microscopy (CAFM), zeta potential measurements and electrochemical method as tools. In this study, 7 kinds of conductive linkers and a conventional alkanethiol linker were used to form the self-assembled monolayers (SAMs) on the gold electrode. From the experimental results, it can be found that the Rct increases logarithmically with monolayer resistance, and decreases exponentially with the surface charge. This result indicates that the steric hindrance plays a minor role in the Rct change when compared to that of the electrostatic force.
By this understanding, we can design a low impedance linker to enhance the signal-to-noise ratio. This enhanced signal can also improve the sensor sensitivity and detection limit. Here we found a linker ATP, which possess a good conductive property and ends with a positive charged functional group. By using ATP, we enhanced the measured signal and improved the sensor sensitivity. Therefore, we can use a simplified electronic circuit to make the biomolecule detection. This study is useful for the point-of-care testing implementation of impedance based biosensor. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:47:12Z (GMT). No. of bitstreams: 1 ntu-100-R98543008-1.pdf: 4363788 bytes, checksum: e386b7995f35f64ff142b1282847a127 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1. 1 Research background 1 1. 2 Literature review 2 1.2. 1 Electrochemical biosensors 2 1.2. 2 Measurement of molecules conductivity 6 1. 3 Motivation 10 1. 4 Thesis organization 11 Chapter 2 Theory 13 2. 1 Electrochemistry basis 13 2.1. 1 Electrochemical Cells 13 2.1. 2 Reduction and Oxidation Process 14 2.1. 3 Cyclic voltammetry 15 2. 2 Electrochemical Impedance Spectroscopy 17 2.2. 1 Impedance basis 17 2.2. 2 Equivalent circuit 18 2.2. 3 Factors Affecting Electrode Reaction Rate and Current 25 2. 3 Introduction of atomic force microscopy 27 2. 4 Zeta potential Measurement 31 2. 5 Lock-in Amplify 34 Chapter 3 Material and methods 38 3. 1 Electrochemical Impedance Spectroscopy 38 3.1. 1 Linkers 38 3.1. 2 Bio-molecules 40 3.1. 3 Other reagents and solutions 40 3.1. 4 Equipments for solution preparation 41 3.1. 5 Linker modifications for electrochemical measurements 42 3.1. 6 Antibody-antigen interaction test 43 3.1. 7 Electrochemical measurements 45 3. 2 Conductive atomic Force Microscopy 46 3.2. 1 Sample preparation 46 3.2. 2 I-V curve measurements 49 3. 3 Zeta potential 51 3. 4 Electronic circuit design for CV and impedance measurements 52 Chapter 4 Results and discussion 57 4. 1 Electrochemical measurements 57 4. 2 Molecule conductivity measurements 61 4.2. 1 I-V characteristics for conjugated and saturated monolayers 61 4.2. 2 Monolayer resistance of conductive linkers 65 4. 3 Zeta potential Measurements 71 4. 4 Electronic system tests 74 4.4. 1 Cyclic voltammetry 74 4.4. 2 Electrochemical impedance spectroscopy 75 Chapter 5 Conclusions and future works 84 5. 1 Conclusions 84 5. 2 Future works 85 | |
| dc.language.iso | en | |
| dc.subject | 空間障礙 | zh_TW |
| dc.subject | 電化學生醫感測器 | zh_TW |
| dc.subject | 靜電力 | zh_TW |
| dc.subject | 導電性鏈結分子 | zh_TW |
| dc.subject | 定點照護 | zh_TW |
| dc.subject | Impedance based biosensor | en |
| dc.subject | Point-of-care | en |
| dc.subject | Conductive linker | en |
| dc.subject | Electrostatic force | en |
| dc.subject | Steric hindrance | en |
| dc.title | 以電荷轉移阻抗機制提升電化學生醫感測系統性能之研究 | zh_TW |
| dc.title | Improving an Impedance Biosensor System Design by Studying the Charge Transfer Resistance Mechanism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林世明 | |
| dc.contributor.oralexamcommittee | 林致廷,李舒昇,李世元 | |
| dc.subject.keyword | 電化學生醫感測器,空間障礙,靜電力,導電性鏈結分子,定點照護, | zh_TW |
| dc.subject.keyword | Impedance based biosensor,Steric hindrance,Electrostatic force,Conductive linker,Point-of-care, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-26 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
