Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33827
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林金全(King-Chuen Lin)
dc.contributor.authorYi-Ju Chenen
dc.contributor.author陳怡如zh_TW
dc.date.accessioned2021-06-13T05:46:56Z-
dc.date.available2006-07-14
dc.date.copyright2006-07-14
dc.date.issued2006
dc.date.submitted2006-07-10
dc.identifier.citation1. W. E. Moerner and David Fromm, Rev. Sci. Instrum. 2003, 74, 3597
2. Miguel Angel Medina and Petra Schwille, BioEssays. 2002, 24, 758
3. Engel A and Muller DJ. Nat Struct Biol. 2000, 7, 715
4. Fisher TE, Marszalek PE, and fernandez JM. Nat Struct Biol. 2000, 7, 719
5. S.Weiss and X. Michalet, Comptes Rendus Physique. 2002, 3, 619
6. W. E. Moerner, L. Kador, Phys. Rev. Lett. 1989, 62, 2535
7. E. B. Shera, N. K. Seitzinger, L. M. Davis, R. A. Keller, S. A.
Soper, Chem. Phys. Lett. 1990, 174, 553
8. Philip Tinnefeld and Markus Sauer, Angew. Chem. Int. Ed. 2005, 44, 2642
9. F. Zarrin, N. J. Dovichi, Anal. Chem. 1985, 57, 2690
10. E. Betzig, R. J. Chichester, Science 1993, 262, 1422.
11. W. P. Ambrose, P. M. Goodwin, J. C. Martin, R. A. Keller, Science 1994, 265, 364
12. T. Enderle, T. Ha, D. S. Chemla, S. Weiss, Ultramicroscopy, 1998, 71, 303
13. M. Koopman, B. I. de Bakker, M. F. Garcia-Parajo, N. F. van Hulst, Appl. Phys. Lett. 2003, 83, 5083.
14. R. Rigler, U. Mets, J. Widengren, P. Kask, Eur. Biophys. J. Biophys. Lett. 1993, 22, 169
15. C. Xu,W. Zipfel, J. B. Shear, R. M.Williams,W.W.Webb, Proc. Natl. Acad. Sci. USA 1996, 93, 10763
16. W. Denk, J. H. Strickler, W.W.Webb, Science 1990, 248, 73
17. A. Fischer, C. Cremer, E. H. K. Stelzer, Appl. Opt. 1995, 34, 1989
18. M. Eigen, R. Rigler, Proc. Natl. Acad. Sci. USA, 1994, 91, 5740
19. T. Ha, I. Rasnik, W. Cheng, H. P. Babcock, G. H. Gauss, T. M. Lohman, S. Chu, Nature, 2002, 419, 638
20. T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, T. Yanagida, Nature 1995, 374, 555
21. M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, Biochem. Biophys. Res. Commun. 1997, 235, 47
22. A. Yildiz, M. Tomishige, R. D. Vale, P. R. Selvin, Science, 2004, 303, 676
23. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, P. R. Selvin, Science, 2003, 300, 2061
24. Martin Bohmer and Francesco Pampaloni, Rev. Sci. Instrum. 2001, 72, 4145
25. T. Rahkonen and J. Kostamovaara, IEEE J. Solid-State Circuits. 1993, 28, 887
26. S. Weiss, Science, 1999, 283, 1676
27. P. M. Goodwin, W. P. Ambrose, and R. A. Keller, Acc. Chem. Res. 1996, 29, 607
28. J.J. Macklin, J.K. Trautman, et al., Science, 1996, 272, 255
29. W. Lukosz, R.E. Kunz, J. Opt. Soc. Am. 1977, 67, 1607
30. J. Widengren, P. Schwille, J. Phys. Chem. A, 2000, 104, 6416.
31. P. Tinnefeld, V. Buschmann, et al., Single Mol. 2000, 1, 215.
32. E.L. Elson, and D. Magde, Biopolymers, 1974, 13, 1.
33. D. Magde, W. W. Webb, and E. Elson. Biopolymers, 1978, 17, 361.
34. S. R., Arago´n, and R. Pecora, Biopolymers, 1975, 14, 119.
35. V.Vukojevic, G. Bakalkina. ,Cell. Mol. Life Sci. 2005, 62, 535
36. T. H. Samuel, W. W. Webb, Biochemistry, 2002, 41, 697
37. S. Maiti, U. Haupts, and W. W. Webb, Proc. Natl.Acad. Sci. U.S.A. 1997 94, 11753.
38. S. R. Arago´n, and R. Pecora. J. Chem. Phys. 1976, 64, 1791.
39. M. Eigen, R. Rigler, Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 5740.
40. Mueller, J.D., Chen, Y. and Gratton, E. Methods Enzymol, 2003, 361, 69
41. Weisshart K, Jungel V, Briddon S J, Current Pharmaceutical Biotechnology, 2004, 5, 135
42. Shimizu, K. T.; Neuhauser, R.; Leatherdale, C. A.; Empedocles, S. A.;Woo, W. K.; Bawendi, M. G. Phys. Rev. B 2001, 63, 205316-1-205316-5.
43. Michael W. Holman, Ruchuan Liu, and David M. Adams, J. Am. Chem. Soc. 2003, 125, 12649
44. Vasudevanpillai Biju, Miodrag Micic, Dehong Hu, and H. Peter Lu, J. Am. Chem. Soc. 2004, 126, 9374
45. Bisquert, J.; Zaban, A.; Salvador, P. J. Phys. Chem. B 2002, 106, 8774
46. Gra¨tzel, M. Nature 2001, 414, 338
47. Kamat, P. V.; Huehn, R.; Nicolaescu, R. J. Phys. Chem. B 2002, 106, 788
48. Linsebigler, A. L.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735
49. Durrant, J. R. J. Photochem. Photobiol. A 2002, 148, 5
50. Basche, T.; Kummer, S.; Brauchle, C. Nature 1995, 373, 132.
51. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 1993, 115, 6382.
52. Md. K. Nazeeruddin,, R. Humphry-Baker, P. Liska, M. Grätzel, J. Phys. Chem. B 2003, 107, 8981.
53. T. Renouard, M. Gra1tzel, Inorg. Chem. 2002, 41, 367.
54. Mohammad K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2001, 123, 1613.
55. K.D. Weston, S.K. Buratto, Chemical Physics Letters, 1999, 308, 58
56. W.-T. Yip, D. Hu, J. Yu, D.A. Vanden Bout, P.F. Barbara, J. Phys. Chem. A, 1998, 102, 7564.
57. R. Loudon, The Quantum Theory of Light, 2nd edn., Oxford University Press, 1983.
58. J. Bernard, L. Fleury, H. Talon, M. Orrit, J. Chem. Phys. 1993, 98, 850.
59. M. Orrit, J. Bernard, R. Brown, B. Lounis, in: E. Wolf_Ed.., Progress in Optics, Vol. XXXV, Elsevier, Amsterdam, 1996, p. 61.
60. S. Landgraf, G. Grampp, Monatsh. Chem. 2000, 131, 839.
61. Hubner, C. G.; Renn, A.; Renge, I.; Wild, U. P. J. Chem. Phys. 2001, 115, 9619.
62. Tinnefeld, P.; Buschmann, V.; Weston, K. D.; Sauer, M. J. Phys. Chem. A 2003, 107, 323.
63.Francis Wilinson, Graeme P. Kelly, J. Chem. Soc. Faraday Trans 1991, 87, 547
64. Liu, R.; Holman, M.; Zang, L.; Adams, D. M. J. Phys. Chem. A 2003, 107, 6522
65. Holman, M. W.; Liu, R.; Adams, D. A. J. Am. Chem. Soc. 2003, 125, 12649
66. Hupp, J. T. Williams, R. D. Acc. Chem. Res. 2001, 34, 808
67. Parson, W. W., Warshel, A. Chem. Phys. 2004, 296, 201
68. Warshel, A.; Parson, W. W. Annu. Rev. Phys. Chem. 1991, 42, 279
69. Marcus, R. A. J. Chem. Phys. 1956, 24, 966
70. Marcus, R. A. Annu. ReV. Phys. Chem. 1964, 15, 155
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33827-
dc.description.abstract在單分子光譜(single molecule spectroscopy)探測技術發展以前,大多數的實驗是探測分子的平均效應,為一個整體所表現出的平均值(ensemble average),此測量結果會損失掉因為個別環境差異所造成的資訊,而單分子探測可針對系統中的單個分子進行研究,能即時瞭解分子構象變化的資訊,或是探測環境對分子所造成的變異性。許多方式都可以用來研究單一分子,如原子力顯微鏡、近場光學顯微鏡等,然而,此種技術對研究分子有輕微的干擾,若使用光學的方式來探測,如:螢光,不僅對研究分子所造成的干擾最小,再加上螢光的靈敏度高,所以利用螢光方式來研究單分子,將比其他方式更準確可靠。因此本實驗利用共聚焦顯微鏡,藉由量測螢光的方式,來偵測單一分子。
本論文研究單分子Oxazine 1在二氧化鈦奈米粒子的動力學過程,發現當Oxazine 1吸附在二氧化鈦薄膜上時,此分子除了以放螢光與intersystem crossing到三重態再回到基態的方式外,其激發態與二氧化鈦的conduction band有相當程度的重疊,使得電子可以由激發態進入二氧化鈦的傳導帶,再以非放光形式回到基態。電子停留在二氧化鈦的時間經過計算後約為數百個毫秒(millisecond),且不同分子間也因為環境不同而有所差異,這是在平均效應下所探測不到的訊息,經由單分子光譜的偵測可以很輕易地被解析出來。
zh_TW
dc.description.abstractFor single molecule spectroscopy (SMS), the molecules are typically studied one at a time by focusing the laser to a diffraction-limited spot and centering the molecule of interest at the laser focal volume. The fluorescence from the molecule is collected, the intensity, and spectrum can be studied for each particular molecule. Notch and band-pass filters are commonly used to prevent the excitation light from reaching the detector. The main advantage of SMS is the ability to explore of heterogeneity in complex materials (like polymer films and glasses) as well as direct observation of dynamical state changes arising from photophysics and photochemistry.
Here we describe a detailed investigation of the fluorescence intensity dynamics before photobleaching. We report on single-molecule studies of photosensitized interfacial electron transfer process in Oxazine 1 - TiO2 nanoparticles (NPs) system. We characterized the triplet-state blinking dynamics and electron transfer dynamics by analyzing the autocorrelation functions. The blinking time due to the triplet state is clearly distinguished from the fluorescence intensity fluctuation time of subseconds to seconds due to electron transfer (ET) process. We observed that the interfacial ET of single molecules on the surface of TiO2 NPs are statically inhomogeneous, varying the rate of the ET reactivity fluctuations from molecule to molecule. Furthermore, dynamic inhomogeneity is associated with the ET fluctuations from time to time for the same individual molecule. These inhomogeneities may be attributed to the difference of Franck-Condon coupling and molecule-surface vibronic coupling caused by different environment.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:46:56Z (GMT). No. of bitstreams: 1
ntu-95-R93223011-1.pdf: 1199525 bytes, checksum: cc26c12dd79df664a7311b901326f081 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsAcknowledgement II
Chinese abstract IV
English abstract V
Contents VI
List of figures VIII

Chapter 1 Introduction of Single Molecule Spectroscopy 1
1.1 What’s single molecule spectroscopy? 1
1.2 Why is single molecule spectroscopy? 1
1.3 How to do single molecule spectroscopy? 4
1.3.1. Fundamentals 4
1.3.2. Microscopy Configurations 7
1.3.2.1 Scanning methods 7
(i) Near-field microscopy 7
(ii) Confocal microscopy 8
1.3.2.2. Wide-field methods 11
(i) Epifluorescence microscopy 12
(ii)Total internal reflection microscopy 13
1.4 References 17

Chapter 2 Single-Molecule Instrument setups 19
2.1 Setup A. -- confocal microscopy 19
2.2 Setup B. -- confocal microscopy coupled with wide-field microscopy 22

Chapter 3 Single Molecule Detection System and Software Setup 24
3.1 Time-correlated single photon counting (TCSPC) 24
3.1.1 Principle of TCSPC 24
3.1.2 TCSPC Electronics 26
3.1.3 Forward and Reverse Mode 28
3.1.4 Temporal resolution and lifetime range 29
3.1.5 Experimental setup 31
3.1.6 Results and discussion 32
3.2 Fluorescence correlation spectroscopy (FCS) 35
3.2.1 Principle of FCS 35
3.2.2 Experimental setup 38
3.2.3 Calibration of the Instrument 39
3.2.3.1 Calibration of Observation Volume 40
3.2.3.2 Calibration of Concentration 42
3.3 References 45

Chapter 4 Electron Transfer Dynamics of Single Oxazine 1 Molecules on TiO2 Nanoparticles 46
4.1 Introduction 46
4.2 Experimental setup 49
4.2.1 Materials 49
4.2.1.1 TiO2 NPs Film 49
4.2.1.2 Dye 50
4.2.1.3 Electrodes and fabrication 50
4.2.2 Instruments 51
4.2.2.1 Photovoltage measurement 51
4.2.2.2 Cyclic voltammogram setup 52
4.2.2.3 Single molecule spectroscopy setup 53
4.3 Fundamental theory 54
4.4 Results and discussion 57
4.5 References 70

Chapter 5 Conclusions and Future Work 72
dc.language.isoen
dc.subject螢光zh_TW
dc.subject單分子zh_TW
dc.subject電子傳遞zh_TW
dc.subject太陽能染料電池zh_TW
dc.subjectconfocal microscopyen
dc.subjectfluorescenceen
dc.subjectsingle molculeen
dc.subjectdye sensitized solar cellen
dc.title利用共聚焦顯微鏡研究Oxazine1單分子在二氧化鈦(TiO2)奈米薄膜的動力學現象zh_TW
dc.titleUsing confocal microscopy to study the dynamic process of single oxazine 1 molecules adsorbed on TiO2 nanoparticlesen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周必泰(Pi-Tai,Chou),王俊凱
dc.subject.keyword單分子,螢光,電子傳遞,太陽能染料電池,zh_TW
dc.subject.keywordsingle molcule,fluorescence,confocal microscopy,dye sensitized solar cell,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2006-07-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved