請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33814
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 趙福杉 | |
dc.contributor.author | Shih-Hung Lin | en |
dc.contributor.author | 林士弘 | zh_TW |
dc.date.accessioned | 2021-06-13T05:46:40Z | - |
dc.date.available | 2011-07-12 | |
dc.date.copyright | 2006-07-12 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-11 | |
dc.identifier.citation | [1] O. F. Schanne, M. Lavallee, R. Laprade, and S. Gagne, 'Electrical Properties of Glass Microelectrodes,' Proceedings of the Institute of Electrical and Electronics Engineers, vol. 56, no. 6, p. 1072-&, 1968.
[2] Jack W.Judy, 'Microelectrode Technologies for Neuroengineered Systems,' 2003, pp. 17-21. [3] P. Norlin, M. Kindlundh, A. Mouroux, K. Yoshida, and U. G. Hofmann, 'A 32-site neural recording probe fabricated by DRIE of SOI substrates,' Journal of Micromechanics and Microengineering, vol. 12, no. 4, pp. 414-419, July2002. [4] C. Y. Xu, W. Lemon, and C. Liu, 'Design and fabrication of a high-density metal microelectrode array for neural recording,' Sensors and Actuators A-Physical, vol. 96, no. 1, pp. 78-85, Jan.2002. [5] G. Buzsaki, 'Large-scale recording of neuronal ensembles,' Nat. Neurosci., vol. 7, no. 5, pp. 446-451, May2004. [6] D. R. Kipke, R. J. Vetter, J. C. Williams, and J. F. Hetke, 'Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex,' IEEE Trans. Neural Syst. Rehabil. Eng, vol. 11, no. 2, pp. 151-155, June2003. [7] R. J. Vetter, J. C. Williams, J. F. Hetke, E. A. Nunamaker, and D. R. Kipke, 'Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex,' IEEE Trans. Biomed. Eng, vol. 51, no. 6, pp. 896-904, June2004. [8] J. N. Turner, W. Shain, D. H. Szarowski, M. Andersen, S. Martins, M. Isaacson, and H. Craighead, 'Cerebral astrocyte response to micromachined silicon implants,' Exp. Neurol., vol. 156, no. 1, pp. 33-49, Mar.1999. [9] D. Williams, 'Revisiting the definition of biocompatibility,' Med. Device Technol., vol. 14, no. 8, pp. 10-13, Oct.2003. [10] Jr. et. a. John W.Clark, Medical instrumentation-Application and Design, 3rd ed JOHN WILEY & SONIC, INC., 1998, pp. 183-226. [11] C. J. Lee, S. J. Oh, J. K. Song, and S. J. Kim, 'Neural signal recording using microelectrode arrays fabricated on liquid crystal polymer material,' Materials Science & Engineering C-Biomimetic and Supramolecular Systems, vol. 24, no. 1-2, pp. 265-268, Jan.2004. [12] G. E. Loeb, M. J. Bak, M. Salcman, and E. M. Schmidt, 'Parylene as a chronically stable, reproducible microelectrode insulator,' IEEE Trans. Biomed. Eng, vol. 24, no. 2, pp. 121-128, Mar.1977. [13] J. Noordegraaf, 'Conformal coating using parylene polymers,' Med. Device Technol., vol. 8, no. 1, pp. 14-20, Jan.1997. [14] E. M. Charlson, E. J. Charlson, and R. Sabeti, 'Temperature selective deposition of Parylene-C,' IEEE Trans. Biomed. Eng, vol. 39, no. 2, pp. 202-206, Feb.1992. [15] E. M. Schmidt, J. S. McIntosh, and M. J. Bak, 'Long-term implants of Parylene-C coated microelectrodes,' Med. Biol. Eng Comput., vol. 26, no. 1, pp. 96-101, Jan.1988. [16] Sergey Edward Lyshevski, MEMS and NEMS : systems, devices, and structures CRC Press, 2002, pp. 57-68. [17] M.Elwenspoek and R.J.Wiergerink, Mechanical microsensors Springer, 2001, pp. 24-57. [18] Julian W.Gardner, Vijay K.Varadan, and Osama O.Awadelkarim, Microsensors, MEMS, and smart devices JOHN WILEY & SONS, LTD, 2001, pp. 9-52. [19] D. J. Edell, V. V. Toi, V. M. McNeil, and L. D. Clark, 'Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex,' IEEE Trans. Biomed. Eng, vol. 39, no. 6, pp. 635-643, June1992. [20] Y. Y. Chen, T. S. Kuo, and F. S. Jaw, 'A laser micromachined probe for recording multiple field potentials in the thalamus,' J. Neurosci. Methods, vol. 139, no. 1, pp. 99-109, Oct.2004. [21] D. A. Robinson, 'Electrical Properties of Metal Microelectrodes,' Proceedings of the Institute of Electrical and Electronics Engineers, vol. 56, no. 6, p. 1065-&, 1968. [22] U.Tietze and Ch.Schenk, Electronic Circuits-Design and Applications, 1st ed Springer-Verlag Hong Kong Edition, 1990, pp. 350-408. [23] B.Williams, Electronic filter design handbook, 1st ed McGraw-Hill Book company, 1980. [24] S. Takeuchi, D. Ziegler, Y. Yoshida, K. Mabuchi, and T. Suzuki, 'Parylene flexible neural probes integrated with microfluidic channels,' Lab Chip., vol. 5, no. 5, pp. 519-523, May2005. [25] Changlin Pang, Jorge G.Cham, Zoran Nenadic, Yu-Chong Tai, Joel W.Burdicl, and Richard A.Andersen, 'A new neural recording electrode array with parylene insulating layer,' 2005, pp. 675-677. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33814 | - |
dc.description.abstract | 為了更瞭解大腦的功能,利用清醒動物進行神經活動的記錄不可或缺。微機電製程製作的多通道微電極陣列可用來進行長期植入的實驗,但為避免微電極在長期植入後對於生物體可能造成的傷害,因此須先進行各種材料的微電極其生物相容性評估。
本文利用微機電製程以矽為基材製作神經探針,探針的前端有三種不同金屬材質之微電極:銀、金、鉑,以提供植入大鼠腦部皮質區進行生物相容性的評估。為了提高神經探針的生物相容性,使用一個具有良好生物相容性的高分子材料:聚-對二甲苯將神經探針完全包覆。微電極的電氣規格會依製程不同而異,因此微電極製作完成後進行其電氣特性之量測。 本文研發新的製程將聚-對二甲苯包覆在探針之外,以提高神經探針之生物相容性,並測試三種不同金屬材質微電極阻抗之頻率響應。此外本文亦製作前端濾波放大電路,克服將記錄到的神經信號傳輸至信號處理端時所遇到的問題。 | zh_TW |
dc.description.abstract | To understand the brain function, neural signal recording in awake animal is indispensable. Neuroprobe fabricated by MEMS process could possibly be used for chronic implantation, but the prerequisite is to reduce tissue damage to an acceptable level after long-term implantation. Therefore, evaluation of biocompatibility of different electrode materials is necessary at the very first step.
We fabricate a silicon-substrate neuroprobe by using MEMS process. Three sensing microelectrodes, made of silver, gold, and platinum, are deposited on the neuroprobe tip. The purpose of using these materials for the microelectrode is for biocompatible evaluation. Parylene, a biocompatible polymer, was used to fully coat the probe to serve this purpose. The microelectrode was tested in vitro to obtain its electrical characteristics. This study brings up a novel fabrication procession to coat probe fully with parylene for increasing biocompatibility, and obtains the frequency response of the microelectrode impedance. Also, a head-stage circuit was developed to improve the quality of the transmission. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T05:46:40Z (GMT). No. of bitstreams: 1 ntu-95-R93548041-1.pdf: 1597942 bytes, checksum: 6ad2fbd91249cdadf11a436b1d96f552 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 口試委員會審書………………………………… i
誌謝……………………………………………… ii 中文摘要………………………………………… iii 英文摘要………………………………………… iv 目錄……………………………………………… v 圖目錄…………………………………………… vii 表目錄…………………………………………… ix 第一章 緒論………………………………… 1 1.1 研究背景與動機…………………… 1 1.2 研究目的…………………………… 3 第二章 實驗內容及方法…………………… 5 2.1 神經探針之設計與製作…………………… 5 2.1.1 微機電製程簡介……………………… 5 2.1.2 神經探針之設計………………………… 14 2.1.3 神經探針之製作………………………… 18 2.2 微電極電氣特性量測……………………… 25 2.3 前端濾波放大電路之製作………………… 27 第三章 實驗結果……………………………… 33 3.1 神經探針…………………………………… 33 3.2 微電極電氣特性量測結果………………… 38 3.3 前端濾波放大電路………………………… 41 第四章 討論………………………………… 44 4.1 製程中遭遇之困難………………………… 44 4.2微電極電氣特性量測………………………… 48 4.3 未來工作與展望……………………………… 52 第五章 參考文獻………………………………… 54 | |
dc.language.iso | zh-TW | |
dc.title | 以微機電製程製作微電極作為評估銀、金、鉑三種材料之生物相容性 | zh_TW |
dc.title | MEMS-based microelectrode made of silver, gold, and platinum for biocompatibility evaluation | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 楊龍杰 | |
dc.contributor.oralexamcommittee | 黃基礎,郭德盛 | |
dc.subject.keyword | 微機電,神經探針,微電極,生物相容性,聚-對二甲苯, | zh_TW |
dc.subject.keyword | MEMS,neuroprobe,microelectrode,biocompatibility,parylene, | en |
dc.relation.page | 56 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 1.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。