Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33711
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor諶玉真
dc.contributor.authorShih-Hao Chouen
dc.contributor.author周勢濠zh_TW
dc.date.accessioned2021-06-13T05:44:55Z-
dc.date.available2006-08-06
dc.date.copyright2006-07-24
dc.date.issued2006
dc.date.submitted2006-07-13
dc.identifier.citation參考文獻
[1]. M. Park, C. Harrison, P. M. Chaikin, R. A. Register,D. H. Adamson, Science 276, 1401 (1997).
[2]. J. H. Collier, P. B. Messersmith, Annu. Rev. Mater. Res.31, 237 (2001).
[3]. R. Savic, L. Luo, A. Eisenberg, D. Maysinger, Science 300, 615 (2003).
[4]. I. W. Hamley, The Physics of Block Copolymers (Oxford Univ. Press, New York, 1998).
[5]. Bates FM, Fredrickson GH ,Annu Rev Phys Chem 41:525 (1990)
[6]. M. W. Matsen and F. S. Bates, Macromolecules, 29, 1091–1098. (1996)
[7]. J. F. Gohy, Adv. Polym. Sci., 190 ,65-136 (2005)
[8]. Kriz J, Masar B, Plestil J, Tuzar Z, Pospisil H, Doskocilova D Macromolecules 31:41 (1998)
[9]. Patrickios, C. S.; Lowe, A. B.; Armes, S. P.; Billingham, N. C. J. Polym.Sci., Part A: Polym. Chem., 36, 617-631. (1998)
[10]. Buぴtuぴn, V.; Wang, X. S.; de Paz Ba´n˜ez, M. V.; Robinson, K. L.; Billingham,N. C.; Armes, S. P. Macromolecules, 33, 1-3. (2000)
[11]. Liu, S.; Armes, S. P. J. Am. Chem. Soc., 123, 9910-9911. ( 2001)
[12]. Gohy, J.-F.; Willet, N.; Varshney, S.; Zhang, J.-X.; Je´roふme, R. Angew.Chem., Int. Ed., 40, 3214-3216. ( 2001)
[13]. Z. Zhou, Z. Li, Y. Ren, M. A. Hillmyer, T. P. Lodge, J.Am. Chem. Soc. 125, 10182 (2003).
[14]. TP Lodge, J. Bang,Z. Li,M. A. Hillmyer,Y. Talmon, Farday Discuss.,128,1-12 (2005)
[15]. I. A. Nyrkova,A. R. Khokhlov,M. Doi, Macromolecules 26, 3601
–3610 (1993)
[16]. A. N. Semenov,I. A. Nyrkova, A. R. Khokhlov, Macromolecules 28, 7491–7500 (1995)
[17]. TP Lodge, M. A. Hillmyer, Z. Li, Y. Talmon Macromolecules 37, 6680–6682 (2004)
[18]. Lambert O, Reutenauer S, Hurtrez G, Dumas P, Macromol. Symp. 161, 97–102 (2000)
[19]. Li Z, Kesselman E, Talmon Y, Hillmyer MA, Lodge TP, Science 306:98 (2004)
[20]. Hoogerbrugge, P. J.; Koelman, J. M. V. A., Europhys. Lett., 19, 155-
160 (1992)
[21]. Groot R. D., Lect. Notes Phys. ,640,5 (2004)
[22]. Groot R. D.; Warren, P. B., J. Chem. Phys., 107, 4423-4435 (1997)
[23]. Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids, (Oxford University Press: London 1987)
[24]. D. Frenkel,B. Smit,Understanding Molecular Simulation,(Academic Press 1996)
[25]. Z. Li,M. A. Hillmyer,T. P. Lodge,Macromolecules ,37,8933-8940
(2004)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33711-
dc.description.abstract在本論文中,我們利用耗散粒子動力學(DPD)來探討三鏈段共聚合物(ABC triblock copolymer)的在稀薄水溶液中的型態。我們主要研究的對象有兩大主軸:線性(linear)、星狀(star)三鏈段共聚合物。我們分別改變兩者的濃度或親水部分的鏈段長度,來觀察聚合物之型態變化。在模擬的結果中,我們發現改變濃度時,無論聚合物分子結構是線性或星狀,聚集體的大小是隨著濃度增加而增大。而在改變親溶劑鏈段長度時,則發現線性三段鏈共聚合物之微胞大小會隨著親溶劑鏈段長度變長而變小,星狀三段鏈共聚高分子則是先隨親溶劑鏈段長度增加而增加,隨後去呈現下降的走勢。在三段鏈線性共聚高分子在稀薄水溶液中出現了core/shell/corona 的微胞型態;而三段鏈星狀共聚合物則是出現了節蟲(segmented worm )型態,這些結果都與文獻中用TEM 所觀察到的型態吻合。顯示我們能成功的利用DPD 方法模擬出三段鏈共聚高分子之型態。此外我們還將分子結構調整為ACB-type、BAC-type 三段鏈線性高分子,在這兩個系統中我們觀察到skin-layer micelle、bicore micelle、sandwich micelle等,進一步的利用DPD 法對高分子型態做預測。zh_TW
dc.description.abstractMutually immiscible triblock copolymers are able to form various multicompartment micelles. Exploring their morphologies involves a large parameter space, including chain architecture, block length, and concentration. However, DPD simulation provides a relatively cheap and fast approach to predict possible morphologies. The complex structure within the multidomain micelle can be easily examined.
In this work, we observe discrete micelles and 'segmented worm'micelles formed by miktoarm star OEF, which are consistent with the experimental results. The former consists of a F core, surrounded by a few E nanodomains. In general, two E nanodomain are found on the top and bottom of the F core to form 'sandwich' micelles. The O blocks emanate from the E-F interface and curl around to protect the hydrophobic core. The latter displays an elongated, wormlike structures.The worms are layered with alternating section of F and E blocks along
the long axis. The O coronas are shared by E and F layers to shield them from the highly unfavorable exposure to water. The segmented worm micelle is always formed for star (x-6-7) as long as the polymer concentration is high enough. The onset concentration for the formation of segmented worm micelles is increased with the hydrophilic O block length. When the hydrophilic O block is large (x=20), the O block screen
the hydrophobic core effectively and the sandwich micelles can survive at higher concentration. On the other hand, for stars with shorter O blocks (x=10), the fluctuation of O concentration in the corona may expose the hydrophobic core from time to time. As a consequence, in forming a segmented worm, the different sandwich micelles are able to share their
O coronas. When the concentration is even higher, the segmented micelles may join together to form segmented network.
In addition to miktoarm star, various morphologies of
multicompartment micelles can be disclosed by linear triblock
copolymers OEF, OFE, and EOF. For linear OEF (x-6-7) triblocks, the CSC structure can be evidently identified with the F core, E shell, and O corona. Nonetheless, the spread of the E blocks on the surface of the F core is not uniform due to E-F incompatibility. As the O block (x) is increased, the aggregation number of the micelle declines. For linear OFE
(x-7-6) with shorter O blocks, the E blocks form a core that is surrounded by an incomplete skin layer of the F block. Since the O blocks protect mainly the F skin, part of the E core is exposed to water. However, when the O block is long enough to curl around to shield the E domain, the core
consists of two separate but adjacent domains (E and F). When the concentration is high enough, the sandwich micelle (F-E-F) is formed by merging two F skin layer micelles. Its formation can remove the exposure of the E core of the skin layer micelle to water. For linear EOF (6-x-7) with longer O blocks, a micelle with two neighboring E and F layers is shielded by the O loops. However, as the O block is too short, only the
combination of several two-layer micelles can provide enough protection by the O blocks. Consequently, segmented worm micelles are formed.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:44:55Z (GMT). No. of bitstreams: 1
ntu-95-R93524072-1.pdf: 6021381 bytes, checksum: 922139db2d51b874ebd1e6cc0ca131f4 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄
致謝............................................................................................................ I
中文摘要................................................................................................... II
Abstract...................................................................................................III
目錄..........................................................................................................VI
圖表目錄...............................................................................................VIII
第一章 緒論……………………………………………………..……1
1.1 簡介……………….………………………..…………....….….. 1
1.2 團狀共聚高分子(block copolymer)……….…….....……... 2
1.3 在水溶液下團狀共聚高分子之微胞…………..……....……… 5
1.4 ABC 三段鏈共聚高分子(ABC triblock copolymer)…............ 6
1.4.1 三段鏈線性共聚高分子……………………………….. 7
1.4.2 三段鏈星狀共聚高分子…………………………..…. 10
第二章 實驗原理與方法…………………………………………... 14
2.1 耗散粒子動力學(Dissipative Particle Dynamics;DPD) 14
2.2 DPD 原理.......................................... 16
2.3 DPD 對應到Flory-Huggins Theory.................... 20
2.4 實驗方法與條件.................................... 23
2.4.1 星狀三鏈段共聚合物之参數設置................................ 24
2.4.2 線性三鏈段共聚合物之参數設置…….………….….. 25
第三章 結果與討論………………………………………………... 27
3.1 線性三段鏈共聚高分子………………………….…………... 27
3.1.1 三段鏈線性共聚高分子改變O 長度........................... 27
3.1.2 三段鏈線性共聚高分子改變濃度…………………… 32
3.1.3 三段鏈線性共聚高分子之型態…………………..….. 36
3.1.4 三段鏈線性OFE 共聚高分子之型態.......................... 39
3.1.5 三段鏈線性EOF 共聚高分子之型態.......................... 43
3.2 三段鏈星狀共聚高分子…………………………………….... 45
3.2.1 三段鏈星狀共聚高分子改變O 長度........................... 45
3.2.2 三段鏈星狀共聚高分子改變濃度…………………… 50
3.2.3 三段鏈星狀共聚高分子之型態……………………… 54
3.3 三段鏈星狀共聚高分子之其他型態………………………… 56
第四章 結論……………………………………………........……... 61
參考文獻............................................... 64
dc.language.isozh-TW
dc.subject三段鏈共聚高分子zh_TW
dc.subject耗散粒子動力學zh_TW
dc.subject分子模擬zh_TW
dc.subjectdissipative particle dynamicsen
dc.subjecttriblock copolymeren
dc.subjectmolecule simulationen
dc.title以耗散粒子動力學法研究三段鏈星狀高分子之型態zh_TW
dc.titleMorphology of Star Triptych Copolymer by Dissipative Particle Dynamicsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曹恆光,陸駿逸,林祥泰
dc.subject.keyword耗散粒子動力學,分子模擬,三段鏈共聚高分子,zh_TW
dc.subject.keyworddissipative particle dynamics,molecule simulation,triblock copolymer,en
dc.relation.page65
dc.rights.note有償授權
dc.date.accepted2006-07-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
5.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved