請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33707完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅筱鳳 | |
| dc.contributor.author | Pei-Hua Chen | en |
| dc.contributor.author | 陳姵華 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:44:52Z | - |
| dc.date.available | 2011-08-01 | |
| dc.date.copyright | 2011-08-01 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-27 | |
| dc.identifier.citation | 1.司家鋼、孫日飛、吳飛燕. 1995. 高溫脅迫對大白菜耐熱性相關生理指標的影響. 中國蔬菜. 4:4-6.
2.行政院農業委員會. 2005. 臺灣農家要覽-農作篇 (二). 豐年社. 臺北市. 3.姚銘輝、漆匡時、蔡金川及梁連勝. 1995. 人工模擬酸霧對三種冬季蔬菜之傷害.中華農業研究 44:72-80. 4.朱德銘. 1995. 植物與環境逆境. 國立編譯館. 臺北. 5.朱德民. 1990. 植物與環境逆境. 國立編譯館主編. 臺北 6.朱德民、蔡秀隆。1992。浸水與玉米生長發育。中華農藝 2: 43-56。 7.苗琛、利容千、王建波. 1994. 甘藍熱脅迫葉片細胞的超微結構研究. 植物學報36:730-732. 8.吳昌祐、朱德民. 1994. 植物在缺氧逆境下之適應調節. 科學農業 42: 140-146. 9.吳國勝、王永健、曹宛虹. 1995. 大白菜熱害發生規律及耐熱性篩選方法的研究. 華北農學報 10:111-115. 10.高景輝. 1988. 淹水與植物發育. 科學農業叢書第十三號. 科學農業社編印. 11.高景輝. 2005. 植物生理學詞彙. 睿煜出版社. 屏東. 12.陳亮憓、蔡秀隆、鄭延景. 2008. 不同溫度下淹水對小白菜產量與品質的影響. 臺灣農學會報9:446-459. 13.陳志宏、劉程煒、尤進欽、陳良築、曾夢蛟. 2006. 熱休克蛋白基因與過氧化酵素基因轉移到甘藍葉綠體之研究. 植物種苗 8:23-45. 14.陳葦玲、郭孚燿、陳榮五. 2009. 利用細胞膜熱穩定性技術篩選高耐熱性葉用蘿蔔. 臺中區農業改良場研究彙報102:15-29. 15.梁佑慎、柯立祥. 2006. 市售蔬菜抗氧化力之研究. 臺灣園藝 52:171-180. 16.葉元純、曾夢蛟. 2003. 共同轉殖蘇力菌殺蟲晶體蛋白、熱休克蛋白、超氧化歧化酵素及過氧化氫酵素基因至甘藍之研究. 興大園藝 28:57-76. 17.葉陳亮、柯玉琴、陳偉. 1996. 大白菜耐熱性的生理研究 II 葉片水分和蛋白質代謝與耐熱性. 福建農業大學學報 25:490-493. 18.楊純明、張芳銘、陳榮坤、李裕娟、沈百奎. 2002. 淹水對莧菜生長及植體水分含量之影響. 中華農業氣象9:49-54. 19.廖芳心、吳明哲. 1997. 溫度對甘藍結球過程中葉片發育及含醣量之影響. 中國園藝 43:350-357. 20.廖芳心、杜宜殷、李國基、黃鵬林. 1998. 應用花粉管基因導入法輔助甘藍抗黑腐病育種之研究. 中國園藝 44:55-63. 21.Ahmed, S., E. Nawata, and T. Sakuratania. 2006. Changes of endogenous ABA and ACC, and their correlations to photosynthesis and water relations in mungbean (Vigna radiata (L.) Wilczak cv. KPS1) during waterlogging. Environ. Expt. Bot. 57:278-284. 22.Ahsan, N., D.G. Lee, S.H. Lee, K. Y. Kang, J. D. Bahk, M. S. Choi, I. J. Lee, J. Renaut, and B. H. Lee. 2007. A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiol. Plant. 131:555-570. 23.Allakhverdiev, S.I., V.D. Kreslavski, V.V. Klimov, D.A. Los, R. Carpentier, and P. Mohanty. 2008. Heat stress: an overview of molecular responses in photosynthesis. Photosyn. Res. 98:541–550. 24.Almeselmani, M., P.S. Deshmukh, R.K. Sairam, S.R. Kushwaha, and T.P. Singh. 2006. Protective role of antioxidant enzymes under high temperature stress. Plant Sci. 171:382-388. 25.Alscher, R., J. Donahue, and C. Cramer. 1997. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Reactive oxygen species and antioxidants: relationships in green cells. Physiol. Plant 100:224-233. 26.Ashraf, M. and H. Rehman. 1999. Interactive effects of nitrate and long-term waterlogging on growth, water relations, and gaseous exchange properties of maize (Zea mays L.) Plant Sci. 144:35-43. 27.Ashraf, M., and M. R. Fooland. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59:206-216. 28.Amico, J. D., A. Torrecillas, P. R. guez, D. Morales, and M. J. Sa´nchez-Blanco. 2001. Differences in the effects of flooding the soil early and late in the photoperiod on the water relations of pot-grown tomato plants. Plant Sci. 160:481-487. 29.Apel, K. and H. Hirt. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann. Rev. Plant Biol. 55:373-399. 30.Bates, L.S., R.D. Walderen and I.D. Taere. 1973. Rapid determination of free proline for water stress studies. Plant soil 39:205-207. 31.Berry, J. and O. Bjo¨rkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31:491-543. 32.Blum, A. and A. Ebercon. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci. 21:43-7. 33.Bilger, W., U. Schreiber, and O.L. Lange. 1987. Chlorophyll fluorescence as an indicator of heat induced limitation of photosynthesis Arbutus unedo L. Plant Response to Stress. Berlin. Springer:391-399. 34.Blokhina, O., T. Chirkova, and V. Fagerstedt. 2001. Anoxic stress leads to hydrogen peroxide formation in plant cells. J. Expt. Bot. 52:1-12. 35.Booij, R. 1987. Environment factors in curd initiation and curd growth of cauliflower in the field. Neth. J. Agr. Sci. 35:435-445. 36.Bradford, K.J. 1983. Involvement of plant growth substances in the alteration of leaf gas exchange of flooded tomato plants. Plant Physiol. 73:480-483. 37.Bradford, K.J. 1983. Effects of soil flooding on leaf gas exchange of tomato plants. Plant Physiol. 73:475-479. 38.Brisson, L.F., I. Zelitch, and E.A. Havir. 1998. Manipulation of catalase levels produces altered photosynthesis in transgenic tobacco plants. Plant Physiol. 116:259-269. 39.Bukhov, N.G., C. Wiese, S. Neimanis, and U. Heber. 1999. Heat sensitivity of chloroplasts and leaves: leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosyn. Res. 59:81-93. 40.Camejo, D., P. Rodríguez, M.A. Morales, J.M. Dell’Amico, A. Torrecillas, and J.J. Alarcón. 2005. High temperature effects on photosynthetic of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162:281-289. 41.Chen, H.H., Z.Y. Sen, and P.H. Li. 1982. Adaptablity of crop plants of high temperature stress. Crop Sci. 22:719-725. 42.Champolivier, L. and A. Merrien. 1996. Effects of water stress applied at different growth stages to Brassica napus L.var. oleifera on yield, yield components and seed quality. J. Agron. 5:153-160. 43.Chirkova, T., T. Zhukova, and N. Goncharova. 1991. Peifity of membrane permeability in wheat and rice seedlings under anoxia. Fiziol Biokhim Kult Rast 23:541-46. 44.Corpas, F., B. Barroso, and L.D. Rio. 2001. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Plant Sci. 6:145-150. 45.Crawford, R., J. Walton, and B. Wollenweber-Ratzer. 1994. Similarities between post-ischaemic injuries to animal tissues and post anoxic injury in plants. Proc. Roy. Soc. Edinburgh 102B:325-32. 46.Crawford, R. and R. Braendle. 1996. Oxygen deprivation stress in a changing environment. J. Exp. Bot. 47:145-49. 47.Dat, F.J., C.H. Foyer, and I.M. Scott. 1998. Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Physiol. Plant 118:1455-1461. 48.Dat, F.J., H. Lopez-Delgado, C.H. Foyer, and I.M. Scott. 1998. Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Physiol. Plant 116:1351-1357. 49.Drew, M. C. 1983. Plant injury and adaptation to oxygen deficiency in the root environment: A review. Plant Soil 75:179-199. 50.Drew, M. C. 1992. Soil aeration and plant root metabolism. Soil Sci. 154: 259-268. 51.Else, M.A., W.J. Davies, M. Malone, and M.B. Jackson. 1995. Root signals, flooding and stomatal closure stomatal conductance and root hydraulic conductivity. Plant Physiol. 109:1017-1024. 52.Else, M.A., D. Coupland, L. Dutton, and M.B. Jackson. 2001. Hydraulic and chemical signalling in flooded and well-drained Castor oil (Ricinus communis L.) plants. Physiol. Planta 111:46-54. 53.Else, M.A., F. Janowiak, C.J. Atkinson1, and M.B. Jackson. 2009. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann. Bot. 103:313-323. 54.Franck, F., P. Juneau, and R. Popovi. 2002. Resolution of the Photosystem I and Photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochimica et Biophysica Acta 1556:239-246. 55.Fricke W., and E. Pahlich. 1990. The effect of water stress on the vacuole-extravacuole compartmentation of proline in potato cell suspension cultures. Plant Physiol. 78:374-378. 56.Nishikawa F., M. Kato, H. Hyodo, Y. Ikoma, M. Sugiura, and M. Yano. 2003. Ascorbate metabolism in harvested broccoli. J. Expt. Bot. 54:2439-2448. 57.Gulen, H. and A. Eris. 2004. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Sci. 166:739-744. 58.Guidi, L. and G. F. Soldatini. 1997. Chlorophyll fluorescence and gas exchanges in flooded soybean and sunflower plants. Plant Physiol. Biochem. 35:713-717. 59.Gulen, H. and A. Eris. 2004. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Sci. 166:739-744. 60.Heldt, H.W. 1999. Plant biochemistry and molecular biology. Oxford University Press. 61.Hare, P.D., W. A. Cress, and J. Van Staden. 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21:535-553. 62.Havaux, M., H. Greppin, and R. Strasser. 1991. Functioning of photosystem I and II in pea leaves exposed to heat stress in the presence or absence of light. Analysis using in vivo fluorescence, absorbance, oxygen and photoacoustic measurements. Planta 186:88-98. 63.Havaux, M., and F. Tardy. 1996. Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophylls content. Plant Cell Environ. 19:1359-68. 64.Havaux, M., F. Tardy, J. Rayenel, D. Chanu, and P. Parot. 1996. Thylakoid membrane stability to heat stress by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: Influence of the xanthophyll content. Plant Cell Environ. 19:1359-68. 65.Huang, B., J. Johnson, S. Nesmith, and D. Bridges. 1994. Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply. J. Expt. Bot. 45:193-202. 66.Hurng, W.P. and C.H. Kao. 1993. Loss of starch and increase of α-amylase activity in leaves of flooded tobacco plants. Plant Cell Physiol. 34:531-534. 67.Jackson, M., D. Davies and H. Lambers. 1991. Plant life under oxygen deprivation. Ecol. Physiol. Biochem. SPB Academic. 68.Jackson, M. 2002. Long-distance signaling from roots to shoots assessed: the flooding story. J. Exp. Bot. 53:175-181. 69.Janowiak, F., M.A. Else, and M.B. Jackson. 2002. A loss of photosynthetic efficiency does not explain stomatal closure in flooded tomato plants. Advances of Agricultural Sciences - Problem Issues (Warsaw) 481:229-234. 70.Karim, M.A., Y. Fracheboud, and P. Stamp. 1999. Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than that of development leaves. Plant Physiol. 105:685-93. 71.Kato, M. and S. Shimizu. 1987. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Can. J. Bot. 65:729-735. 72.Kautsky, H. and A. Hirsch. 1934. Chlorophyll fluoreszenz und Kohlensäureassimilation I. Das Fluoreszenzverhalten grüner Pflanzen Biochem. Zeitschrift 274:423-434. 73.Kaurl, P., N. Ghai1, and M.K. Sangha. 2009. Induction of thermotolerance through heat acclimationand salicylic acid in Brassica species. Afr. J. Biotechnol. 8:619-625. 74.Kerdnaimongkol, K. and W. R. Woodson. 1999. Inhibition of catalase by antisense RNA increases susceptibility to oxidative stress and chilling injury in transgenic tomato plants. J. Amer. Soc. Hort. Sci. 124: 330-336. 75.Knipp, G. and B. Honermeier. 2006. Effect of water stress on proline accumulation ofgenetically modified potatoes (Solanum tuberosum L.) generating fructans. J. Plant Physiol. 163:392-397. 76.Kramer, P.J. 1969. Plant and soil water relationships: a modern synthesis. London: McGraw Hill. 77.Krause, G.H. and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:313-349. 78.Lafuente, M.T., A. Belver, and M.G. Guye, Salveit ME. 1991 Effect of temperature conditioning on chilling injury of cucumer cotyledons-posible role of abscisic acid and heat shock proteins. Plant Physiol. 95:443-9. 79.Larkindale, J. and M.R. Knight. 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene and salicylic acid. Plant Physiol. 128:682-695. 80.Law, R.D. and S.J. Crafts-Brandner. 1999. Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol. 120:173-81. 81.Licthenthaler, H. K. and S. Burkart. 1999. Photosynthesis and high light stress. Bulg J Plant Physiol 25:3-16. 82.Lim, C. C., R. Arora, and E. C. Townsend. 1998. Comparing gompertz and richards funcations to estimate freezing injury in Rhodeodendron using electrolyte leakage. J. Amer. Soc. Hort. Sci. 123:246-252. 83.Taiz L. and E. Zeiger. 2006. Plant Physiology. Sinauer Associate, Inc. U.S.A. 84.Ma, Y.H., F.W. Ma, J.K. Zhang, M.J. Li, Y.H. Wang, and D. Liang. 2008. Effects of high temperature on activities and gene expression of enzymes involved in ascorbate–glutathione cycle in apple leaves. Plant Sci. 175:761-766. 85.Mayeux, J.R., W.R. Jordan, R.E. Meyer, and S.M. Meola. 1981. Epicuticular wax on goldenweed (Isocoma spp.) leaves: variation with species and season. Weed Sci. 29:389-393. 86.Mishra, Y., P. Bhargava, and L.C. Rai. 2005. Differential induction of enzymes and antioxidants of the antioxidative defense system in Anabaena doliolum exposed to heat stress. J. Therm. Biol. 30:524-531. 87.Mohanty, N., J. Vass, and S. Demeter. 1989. Impairment of photosystemⅡ activity at the level of secondary quinine electron acceptor in chloroplasts treated with cobalt, nickel and zine ions. Plant Physiol. 76:386-390. 88.Moldau, H. 1973. Effects of various water regimes on stomatal and mesophyll conductances of bean leaves. Photosyn. 7:1-7. 89.Moog, P. and W. Bruggemann. 1993. Influence of root oxygen deficiency on photosynthesis and saccharide contents of Carex species. Photosyn. 28:523-529. 90.Mukherjee, S.P. and M.A. Choudhuri. 1983. Implications of water stress-induced changes in the level of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Plant. 58:166–170. 91.NaKano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:867­880. 92.Ozden, M., U. Demirel, and A. Kahraman. 2009 Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Hort. 119:163-168. 93.Paoletti, F., D. Aldinucci, A. Mocali, and A. Capparini. 1986. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 154:536¬541. 94.Pastenes, C., and P. Horton. 1996. Effect of high temperature on photosynthesis in beans (I. oxygen evolution and chlorophyll fluorescence). Amer. Soc. Plant Biologists 112:1245-1251. 95.Pearcy, R. W. 1978. Effectes of growth temperature on the fatty acid composition of the leaf lipids in Atriplex lentiformis (Torr.)Wats. Plant Physiol. 61:484-486. 96.Prasad, T., M. Anderson, and C. Steward. 1995. Localization and characterization of peroxidases in the mitochondria of chilling-acclimated maize seedlings. Physiol. Plant 108:1597-1605. 97.Prior, R. L. and G. Cao. 2000. Antioxidant phytochemicals in fruits and vegetables: diet and health implications. HortScience 35(4):588-592. 98.Quinn, P.J. and WP Williams. 1985. Environmentally induced changes in thylakoid membranes and their effect on photosynthetic function. In: Barber J., Baker NR editors. Photosynthetic Mechanisms and the Environment. Amsterdam: Elsevier p. 1-47. 99.Raison, J.K., J.A. Berry, P.A. Armond, and C.S. Pike. 1980. Membrane properties in relation to the adaptation of plants to high and low temperature stress. p. 261-273. In: N.C. Turner and P.J. Kramer (eds.). Adaptation of plants to water and high temperature stress. Wiley-Interscience, New York. 100.Rhodes, D. and A. D. Hanson. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357-384. 101.Ristic, Z., G. Williams, G. Yang, B. Martin, and S. Fullerton. 1996. Dehydration, damage to cellular membranes, and heat-shock proteins in maize hybrids from different climates. Plant Physiol. 149:424-32. 102.Suzuki, N. and R. Mittler. 2006. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant. 126:45-51. 103.Schaedle, M. and J.A. Bassham. 1977. Chloroplasts glutathione reductase. Plant Physiol. 59:1011-1012. 104.Schildwacht, P.M. 1989. Is a decreased water potential after withholding oxygen from the roots the cause of the decline of leaf-elongation rates in Zea mays L. and Phaseolus vulgaris L.? Planta 177:178-184. 105.Saadalla, M. M., J. S. Quick, and J. F. Shanahan. 1990. Heat tolerance in winter wheat: II. Membrance thermostability and field performance. Crop Sci. 30:1248-1251. 106.Shanahan, J.F., I.B. Edwards, J.S. Quick, and J.R. Fenwick. 1990. Membrane thermostability and heat tolerance of spring wheat. Crop Sci. 30:247-51. 107.Titarenko, T. 2000. Test parameters of revealing the degree of fruit plants tolerance to the root hypoxia caused flooding of soil. Plant Physiol. Biochem. 38:s115. 108.Trippi, V.S. and K.V. Thimann. 1983. The exudation of solutes during senescence of oat leaves. Plant Physiol. 101:807-814. 109.Wise, R.R., A.J. Olson, S.M. Schrader, and T.D. Sharkey. 2004. Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ. 27:717-724. 110.Vereyken, I.J., V. Chupin, F.A. Hoekstrat, S.C.M. Smeekens, and B. De Kruijff. 2003. The effect of fructan on membrane lipid organization and dynamics in the dry state. Biophys 84:3759-3766. 111. Voesenek, L.A.C.J., C.D. Colmer, R. Pierik, F.F. Millenaar, A.J.M. and Peeters. 2006. How plants cope with complete submergence. New Phytol. 170:213-226. 112. Yamada, M., T. Hidaka, and H. Fukamachi. 1996. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Scientia Horticulturae: 67:39–48. 113. Yamane, Y., T. Shikanai, H. Koike, and K. Satoh. 2000. Reduction of QA in the dark: another cause of fluorescence Fo increases by high temperatures in higher plants. Photosyn. Res. 63:23-34. 114. Yan, B., Q. Dai, X. Liu, S. Huang, and Z. Wang. 1996. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil 179:261-268. 115. Yordanova, R.Y. and L.P. Popova. 2007. Flooding-induced changes in photosynthesisand oxidative status in maize plants. Acta Physiol. Plant. 29:535-541. 116. Yordanova, R.Y., K. Christov, and L.P. Popova. 2004. Antioxidative enzymes in barley plants subjected to soil flooding. Environ. Expt. Bot. 51:93-101. 117. Yordanova, R, A. Uzunova, and L.P. Popova. 2005. Effects of short-term soil flooding on stomata behaviour and leaf gas exchange in barley plants. Biol. Plant 49:317-319. 118. Yordanova, R.Y. and L.P. Popova. 2001. Photosynthetic response of barley plants to soil flooding. Photosynthetica 39:515-520. 119. Zude-Sasse, M. and P. Ludders. 2000. Short- and long-term responses of mango trees to root zone anoxia. Plant Physiol. Biochem. 38:s126. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33707 | - |
| dc.description.abstract | 甘藍(Brassica oleracea L. var. capitata L.) 為世界性重要蔬菜,臺灣2000~2009年甘藍栽培面積平均8,642公頃,但夏秋之間經常受颱風或豪雨侵襲,造成供需失衡。本研究依據夏季淹水產量試驗,選出耐及不耐高溫淹水之品種,探討其苗株在高溫淹水逆境下之生理差異。2009年夏季,甘藍25個品種苗株經過淹水兩天後,’228’、’早秋’及’BB113’之葉綠素螢光Fv/Fm值皆未下降。2009年夏季分別於雲林縣二崙鄉及臺南市新化區臺南區農業改良場田間進行25及24個品種淹水試驗,根據產量選出’青翠’、’No.525’、’228’、’夏峰一號’、’大蕊’、’早秋’、’初秋’、’臺南一號’及’臺南二號’共9個品種,在2010年夏季於臺南場再淹水2天後,結球率、單位面積產量、單株葉球重及生長級數總和均以’No.525’及’228’最高,而’大蕊’之單位面積產量、單株葉球重及生長級數總和皆為最低,故選擇經濟栽培品種228為耐高溫淹水品種,’大蕊’為不耐高溫淹水品種,進行苗株高溫淹水生理試驗。兩品種於生長箱中育苗,25天苗予以35/30oC不淹水、35/30oC淹水、25/20oC不淹水及25/20oC淹水處理48小時,‘228’經35/30oC淹水處理後,膜傷害指數(membrane injury index,MII)與相對水分含量(relative water content,RWC)皆無顯著變化,其原生質膜與水分吸收於35/30oC淹水下具有較佳之穩定性;但其臘質含量於淹水48 小時顯著減少。‘228’與‘大蕊’於35/30oC淹水及不淹水48小時,脯胺酸含量皆顯著增加,25/20oC淹水48小時則僅‘228’脯胺酸含量顯著升高。’228’之超氧岐化酶(superoxide dismutase,SOD)、抗壞血酸過氧化酶(ascorbate peroxidase,APX)、過氧化氫酶(catalase,CAT)與穀胱甘肽還原酶(glutathione reductase,GR)活性於35/30oC不淹水、35/30oC淹水及25/20oC淹水處理48小時皆比’大蕊’高。‘228’與‘大蕊’25天苗株予以40/35oC不淹水、40/35oC淹水、25/20oC淹水及25/20oC不淹水處理48小時後,’大蕊’之氣孔導度於三種逆境下升高程度皆較‘228’大。故甘藍‘228’與‘大蕊’25天苗株在高溫淹水逆境下MII、氣孔導度、RWC、SOD、APX及GR活性之優劣表現與夏季淹水產量之高低互相對應,這些參數或可作為甘藍高溫淹水耐受性之篩選指標。 | zh_TW |
| dc.description.abstract | Cabbage (Brassica oleracea L. var. capitata L.) is a worldwide important vegetable. The average planting area of cabbage in Taiwan was 8,642 ha from 2000 to 2009. But in the summer and autumn, typhoons often cause imbalance of supply and demand of cabbage. In this research, high temperature and waterlogging-tolerant and -sensitive cultivars were selected by yield to study their physiological differences at seedling stage under high temperature and waterlogging stresses. Seedlings of 25 cabbage cultivars were treated with waterlogging for two days in 2009 summer. Chlorophyll fluorescence Fv/Fm values of ’228’,’ Tazu Chiou’ and ’BB113’ did not decrease significantly. Twenty-five and 24 cabbage cultivars were treated with waterlogging for two days in the field at Yunlin and Tainan in 2009 summer. According to the yield, ’Ching Tsuei’, ’No.525’, ’228’, ’Shia Feng No.1’, ’Fuyudori’, ’Tazu Chiou’, ’ Chu Chiou’, ’ Tai Nan No.1’, and ’ Tai Nan No.2’ were selected to conduct waterlogging trial at Tainan in 2010 summer. ’No.525’ and ’228’ exhibited the highest heading percentages, yield per unit area and sum of growth score. ’Fuyudori’ showed the lowest yield per unit area, weight of leaf head and sum of growth score. High temperature and waterlogging tolerant cultivar ’228’ and sensitive cultivar ’Fuyudori’ were used as experimental materials of seedling experiment. Seeds were sown in growth chamber. Twenty-five days seedlings were treated with 35/30oC, 35/30oC with waterlogging, 25/20oC, and 25/20oC with waterlogging, separately. Membrane injury index (MII) and relative water content (RWC) of ‘228’ treated with 35/30oC and waterlogging did not change significantly. Proline contents of 2 cultivars treated with 35/30oC with and without waterlogging for 48 hr increased significantly. But in the treatment of 25/20oC and waterlogging for 48 hr, only ‘228’ increased proline significantly. For treatments of 35/30oC with and without waterlogging, and 25/20oC with waterlogging, the activities of antioxidtive enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR) increased more in ‘228’. Twenty-five day seedlings of 2 cultivars were treated with 40/35oC, 40/35oC with waterlogging, 25/20oC, and 25/20oC with waterlogging, separately. Stomatal conductance of ’Fuyudori’ significantly increased more than ’228’ in the treatments of 35/30oC with and without waterlogging, and 25/20oC with waterlogging. Therefore, the expressions on MII, RWC, stomatal conductance, and SOD, GR and APX activities of cabbage ’228’ and ’Fuyudori’ seedlings under high temperature and waterlogging were similar to yield in waterlogging trials in summer. These parameters might be used as screening indicators for high temperature and waterlogging tolerance of cabbage. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:44:52Z (GMT). No. of bitstreams: 1 ntu-100-R98628130-1.pdf: 2528037 bytes, checksum: b7453bf56b0e8766db075f3576ac8e24 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員審定書………………………………………………….……Ι
誌謝…………………………………………………………………...II 中文摘要………………………………………………………..... III 英文摘要…………………………………….…………….…........V 第一章 前言……………………………………………………………..1 第二章 前人研究 一、甘藍概述……………………………………………………………2 二、植物於高溫逆境下之生理反應…………………………………..5 三、植物於淹水逆境下之生理反應………………………………….13 第三章 材料方法 一、甘藍苗期夏季淹水試驗.….….………………………………16 二、甘藍25個品種夏作淹水產量試驗…………………………………18 三、甘藍9個品種夏作淹水產量試驗…………………………………19 四、甘藍苗期高溫淹水生理試驗 (一) 甘藍苗期35℃/30℃淹水試驗…………………………………19 (二) 甘藍苗期40℃/35℃淹水試驗…………………………………23 五、統計分析…………………………………………………………24 第四章 結果 一、甘藍苗期夏季淹水試驗.……………………………………25 二、甘藍25個品種夏作淹水產量試驗……………………………25 三、甘藍9個品種夏作淹水產量試驗………………………………26 四、甘藍苗期高溫淹水生理試驗 (一) 甘藍苗期35℃/30℃淹水試驗………………………………28 (二) 甘藍苗期40℃/35℃淹水試驗………………………………30 第五章 討論 一、甘藍苗期夏季淹水試驗……………………………………73 二、甘藍25個品種夏作淹水產量試驗………………………………73 三、甘藍9個品種夏作淹水產量試驗………………………………74 四、甘藍苗期高溫淹水生理試驗…………………………………75 第六章 結論…………………………………………………………82 參考文獻……………………………………………………………85 附錄 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氣孔導度 | zh_TW |
| dc.subject | 超氧岐化酶 | zh_TW |
| dc.subject | 抗壞血酸過氧化酶 | zh_TW |
| dc.subject | 過氧化氫酶 | zh_TW |
| dc.subject | 穀胱甘肽 | zh_TW |
| dc.subject | 還原酶 | zh_TW |
| dc.subject | 膜傷害指數 | zh_TW |
| dc.subject | ascorbate peroxidase | en |
| dc.subject | membrane injury index | en |
| dc.subject | glutathione reductase | en |
| dc.subject | catalase | en |
| dc.subject | superoxide dismutase | en |
| dc.subject | stomatal conductance | en |
| dc.title | 甘藍對高溫淹水之生理反應 | zh_TW |
| dc.title | Physiological Response of Cabbage (Brassica oleracea L. var. capitata L.) to High Temperature and Waterlogging | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曹幸之,宋妤,張連宗 | |
| dc.subject.keyword | 超氧岐化酶,抗壞血酸過氧化酶,過氧化氫酶,穀胱甘肽,還原酶,膜傷害指數,氣孔導度, | zh_TW |
| dc.subject.keyword | superoxide dismutase,ascorbate peroxidase,catalase,glutathione reductase,membrane injury index,stomatal conductance, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-27 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
