Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33706
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳尊賢
dc.contributor.authorTing-En Huen
dc.contributor.author胡庭恩zh_TW
dc.date.accessioned2021-06-13T05:44:51Z-
dc.date.available2008-07-19
dc.date.copyright2006-07-19
dc.date.issued2006
dc.date.submitted2006-07-13
dc.identifier.citation中央氣象局。1994。台灣地區氣候圖集。
台灣省林務局。1995。第三次台灣森林資源及土地利用調查。
王巧萍,劉美娟,林國銓,王立志。2003。火燒及植被對七星山土壤溫度及化學性質之影響。台灣林業科學。18:43-54。
林國銓,黃菊美,王巧萍,張乃航。六龜台灣杉人工林碳和氮的累積和分布。台灣林業科學。19:225-235。
吳森博。2005。宜蘭太平山地區淋澱化土之特性化育與分類。國立台灣大學農業化學研究所博士論文。
張仲民。1987。普通土壤學。p. 201-204。國立編譯館。
蔣先覺、陳尊賢、林光清、洪富文。1994。臺灣高山森林土壤型態、性質與分類。臺灣省林業試驗所。
Almendros, G., F. J. Gonzalez-Vila, and F. Martin. 1990. Fire-induced transformation of s oil organic matter from an oak forest: an experimental approach to the effects of fire on humic substances. Soil Sci. 149:158-68.
Batjes, N. H. 1998. Mitigation of atmospheric CO2 concentrations by increasing carbon sequestration in the soil. Biol. Fertil. Soils 3:230-235.
Benemann, J. R. 1992. The use of iron and other trace element fertilizers in mitigating global warming. J. Plant Nutr. 15:2277-2313.
Berg, B. 1986. Nutrient release from litter and humus in coniferous forest soils- A mini review. Scand. J. For. Res. 1:359-369.
Bisutti, I., I. Hilke, M. Raessler. 2004. Determination of total organiccarbon–an overview of currentmethods. Trends Anal. Chem. 23:716-726.
Black, T. A., and J. W. Harden. 1995. Effect of timber harvest on soil carbon storage at Blodgett Experimental Forest, California. Can. J. For. Res. 25:1385-1396.
Blake G. R., and K. H. Hartage. 1986. Bulk density. p.363-375. In A. Klute, G. S. Campell, R. D. Jackson, M. M. Mortland, and D. R. Nielsen (eds.) Methods of soil analysis. Part 1. Physical and mineralogical methods. ASA and SSSA, Madison, WI, USA.
Bonde, T., B. T. Christensen, and C. C. Cerri. 1992. Dynamics of organic matter as reflected by natural 13C abundance in the particle size fractions of forested and cultivated Oxisols. Soil Biol. Biochem. 24:275-277.
Bremmer, J. M. 1996. Nitrogen-Total. p.1085-1121. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Summer (eds.) Methods of soil analysis. Part 3. Chemical methods. ASA and SSSA, Madison, WI, USA.
Chen Z. S. 1994. Soil temperature regimes in low elevation of Taiwan as defined in Soil Taxonomy. J. Chinese Agri. Chem. Soc. 32:125-131.
Chen, Z. S., and Z. Y. Hseu. 1997. Total organic carbon pool in soils of Taiwan. Proc. National Sci. Council ROC. Part B: Life Sci. 21:120-127.
Covington, W. W. 1981. Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwood. Ecology 62:41-48.
Criquet, S. 2002. Measurement and characterization of cellulase activity in sclerophyllous forest litter. J. Microbiol. Methods 50:165-173.
Davis A. A., M. H. Stolt, J. E. Compton. 2004. Spatial distribution of soil carbon in Southern New England hardwood forest landscapes. Soil Sci. Soc. Am. J. 68:895-903.
Dixon, R. K., S. Brown, R. A. Houghton, A. M. Solomon, M. C. Trexler, and J. Wisniewski. 1994. Carbon pools and fluxes of global forest ecosystems. Science 263: 185-190.
Dixon, R. K., and J. Wisniewski. 1995. Global forest systems: An uncertain response to atmospheric pollutants and global climate change? Water Air Soil Pollut. 85:101-110.
Eswaran, H., F. P. Reich, J. M. Kimble, F. H. Beinroth, E. Padamnabhan, and P. Moncharoen. 2000. Global carbon stocks. p.15-25. In R. Lal, J. M. Kimble, H. Eswaran, and B. A. Stewart (Eds.) Global Climate Change and Pedogenic Carbonates. CRC/Lewis, Boca Raton, FL.
Eswaran, H., E. Van den Berg, and P. Reich. 1993. Organic carbon in soil of the world. Soil Sci. Soc. Am. J. 57:192-194.
Falloon, P. D., P. Smith, J. U. Smith, J. Szabo, K. Coleman, and S. Marshall. 1998. Regional estimates of carbon sequestration potential: linking the Rothamsted Carbon Model to GIS databases. Boil. Fertil. Soils 27:236-241.
Fernandez, I.J., Y. Son, C. R. Kraske, L. E. Rustad, and M. B. David. 1999. Soil carbon dioxide characteristics under different forest types and harvest. Soil Sci. Soc. Am. J. 57:1115-1121.
Finzi, A. C., N. Van Breemen, and C. D. Canham. 1998. Canopy tree soil interactions within temperate forests: Species effects on soil carbon and nitrogen. Ecol. Appl. 8:440-446.
Fisher, R. F. 1995. Soil organic matter: clue or conundrum? p.1-12. In W. W. McFee, J. M. Kelly (Eds.) Carbon forms and functions in forest soils. ASA, CSSA, and SSSA, Madison, WI, USA.
Gardner, W. H. 1986. Water content. p.493-544. In A. Klute, G. S. Campell, R. D. Jackson, M. M. Mortland, and D. R. Nielsen (eds.) Methods of soil analysis. Part 1. Physical and mineralogical methods. ASA and SSSA, Madison, WI, USA.
Garten, C. T., W. M. Post, P. J. Hanson, and L. W. Cooper. 1999. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains. Biogeochemistry 45:115-145.
Gee, G. W., and J. W. Bauder. 1986. Particle-size analysis. p.383-411. In A. Klute, G. S. Campell, R. D. Jackson, M. M. Mortland, and D. R. Nielsen (eds.) Methods of soil analysis. Part 1. 2nd ed. ASA and SSSA, Madison, WI, USA.
Giardina, C. P., M. G. Ryan, R. M. Hubbrad, and D. Binkley. 2001. Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Sci. Soc. Am. J. 65:1272-1279.
Guo, Y., R. Amundson, P. Gong, and Q. Yu. 2006. Quantity and spatial variability of soil carbon in the conterminous United States. Soil Sci. Soc. Am. J. 70:590-600.
Homann, P. S., P. Sollins, M. Fiorella, T. Thorson, and J. S. Kern. 1998. Regional soil organic carbon storage estimates for western Oregon by Multiple Approaches. Soil Sci. Soc. Am. J. 62:789-796.
Hontoria, C., J. C. Rodriguez-Murillo, and A. Saa.1999. Relationships between soil organic carbon and site characteristics in Peninsular Spain. Soil Sci. Soc. Am. J. 63:614-621.
Johnson, D. W., D. E. Todd, Jr., and V. R. Tolbert. 2003. Change in ecosystem carbon and nitrogen in a loblolly pine plantation over the first 18 years. Soil Sci. Soc. Am. J. 67:1594-1601.
Kalbitz, K. S., S. Solinger, J. H. Park, B. Michalzik, and E. Matzer. 2000. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci. Soc. 165:277-304.
Klopatek, J. M. 2002. Belowground carbon pools and processes in different age stands of Douglas-fir. Tree Physiology 22:197-204.
Kulmatiski, A., D. J. Vogt, T. G. Siccama, J. P. Tilley, K. Kolesinskas, T. W. Wickwire, and B. C. Larson. 2004. Landscape determinants of soil carbon and nitrogen storage in southern New England. Soil Sci. Soc. Am. J. 68:2014-2022.
Ladegaard-Pedersen, P., B. Elberling, and L. Vesterdal. 2005 .Soil carbon stocks, mineralization rates, and CO2 effluxes under 10 tree species on contrasting soil types. Can. J. For. Res. 35:1277-1284.
Lal, R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123:1-22.
Lal, R. 2005. Forest soils and carbon sequestration. For. Ecol. Manage. 220:242-258.
Lin, K. C., C. P. Wang, C. M. Huang, F. W. Horng, and C. M. Chiu. 2003. Estimates of biomass and carbon storage in two Taiwania plantations of the Liukuei Experimental Forest. Taiwan J. For. Sci. 18:85-94.
Lemenih, M., and F. Itanna. 2004. Soil carbon stocks and turnovers in various vegetation types and arable lands along an elevation gradient in southern Ethiopia. Geoderma 123:177-188.
McGrath D. and C. Zhang. 2003. Spatial distribution of soil organic carbon concentrations in grassland of Ireland. Appl. Geochem. 18:1629-1639.
Mattson, K. G., and W. T. Swank. 1989. Soil and detrital carbon dynamics following forest cutting in the southern Appalachians. Biol. Fertil. Soils 7:247-253.
Melillo, J. M., J. D. Aber, A. E. Linkins, A. Ricca, B. Fry, and K. J. Nadelhoffer. 1989. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 115:189-198.
Menyailo, O. V., B. A. Hungate, and W. Zech. 2002. Tree species mediated soil chemical changes in a Siberian artificial afforestation experiment: Tree species and soil chemistry. Plant Soil 242:171-182.
Nelson D. W., L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p.961-1010. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Summer (eds.) Methods of soil analysis. Part 3. Chemical methods. ASA and SSSA, Madison, WI, USA.
Parfitt, R. L., B. K. G. Theng, T. S. Whiton, and T. G. Shepherd. 1997. Effects of clay minerals and land use on organic matter pools. Geoderma 75:1-12.
Paul, K. I., P. J. Polglase, and G. P. Richards. 2002. Change in soil carbon following afforestation. For. Ecol. Manage. 168:241-257.
Prentice, I.C. 2001. The carbon cycle and the atmospheric carbon dioxide. p.183-237. In Climate change: The scientific basis. IPCC, Cambridge Univ, Press, UK.
Prichard, S. J., D. L. Peterson, and R. D. Hammer. 2000. Carbon Distribution in Subalpine Forests and Meadows. Soil Sci. Soc. Am. J. 64:1834-1845.
Resh, S. C., D. Binkley, and J. A. Parrotta. 2002. Greater soil carbon sequestration under nitrogen fixing trees compared with eucalyptus species. Ecosystem 5:217-231.
Schimel, D. S., B. H. Braswell, E. A. Holland, R. McKeown, D. S. Ojima, T. H. Painter, W. J. Parton, and A. R. Townsend. 1994. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem. Cycles 8:279-293.
Schjønning, P., I. K. Thomsen, J. P. Møberg, H. de Jonge, K. Kristensen, and B. T. Christensen. 1999. Turnover of organic matter in differently textured soils: I. Physical characteristics of structurally disturbed and intact soils. Geoderma 177-198.
Scott, N. A. 1998. Soil aggregation and organic matter mineralization in forest and glasslands: plant species effects. Soil Sci. Soc. Am. J. 62:1081-1109.
Scott, N. A., C. V. Cole, E. T. Elliott, and S. A. Huffman. 1996. Soil textural control on decomposition and soil organic matter dynamics. Soil Sci. Soc. Am. J. 60:1102-1109.
Soil Survey Staff. 2003. Keys to Soil Taxonomy. 9th ed. USDA Natural Resources Conservation Service, Washington, DC, USA.
Tan. Z., R. Lal, N. E. Smeck, F. G. Calhoun, B. K. Slater, B. Parkinson, and R. M. Gehring. 2004. Taxonomic and geographic distribution of soil organic carbon pools in Ohio. Soil Sci. Soc. Am. J. 68:1896-1904.
Taylor, B. R., D. Parkinson, and W. F. J. Parsons. 1989. Nitrogen and lignin content as predictors of litter decay rates: A microcosm test. Ecology 70:97-104.
Thomas, G. W. 1996. Soil pH and soil acidity. p.475-490. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Summer (eds.) Methods of soil analysis. Part 3. Chemical methods. ASA and SSSA, Madison, WI, USA.
Thomsen, I. K, P. Schjønning, B. Jensen, K. Kristensen, and B. T. Christensen. 1999. Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. Geoderma 199-218.
Tsai, C. C., and Z. C. Chen. 2002. The estimation of total carbon stock in Taiwan forest soils. p.53-62. In K. C. Lin and J. C. Lin (Eds.) Proceedings international symposium on forest on forest carbon sequestration and monitoring. TFRI, Council of Agriculture, Taipei, Taiwan.
Wedin, D. A., and D. Tilman. 1990. Species effects on nitrogen cycling: A test with perennial grasses. Oecologia 84:433-441.
Yanai, R. D., W. S. Currie, and C. L. Goodale. 2003. Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered. Ecosystems. 56:197-212.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33706-
dc.description.abstract本研究於台灣北部地區選擇九種主要的人工林樹種,包括針葉樹林之柳杉、台灣杉、巒大杉、扁柏、紅檜、肖楠,與闊葉樹林之相思樹、油桐、台灣櫸等,研究區域之海拔高度介於200-2000 m之間,隨著海拔高度的增加,其氣候條件變化從亞熱帶到溫帶,依不同樹種或不同樹齡在分布區域內各採集3個土壤樣體,每個土壤樣體採集不同深度之土壤至母岩,分析土壤中之有機碳含量、總體密度及含石量,並利用分析結果估算土壤樣體中的碳庫。結果顯示土壤碳貯存量在樹種間有顯著差異(p < 0.05),土壤碳貯存量與樹齡大小無顯著相關。油桐碳貯存量最低,在不同深度之碳貯存量分別為2.2 kg C 30cm-1 m-2,4.0 kg C 50cm-1 m-2,與4.0 kg C m-1 m-2;扁柏碳貯存量最高,在不同深度之碳貯存量分別為12.0 kg C 30cm-1 m-2,15.9 kg C 50cm-1 m-2,與21.1 kg C m-1 m-2;其他樹種土壤碳貯存量居中。不同的樹種凋落物的碳氮比不同,顯示出不同樹種對於土壤有機碳累積的貢獻不同。土壤碳貯存量與海拔高度呈顯著正相關(p < 0.05),這是由於在不同海拔高度下,氣溫和雨量共同支配著土壤有機質的動力學變化。土壤pH值與土壤碳貯存量呈顯著負相關(p < 0.05)。臺灣北部各人工林土壤中的碳有50%以上貯存在表土30 cm土層中,有70%以上貯存在表土50 cm土層中。這研究顯示除了樹種因子外,還有其他環境因子也會影響人工林土壤有機碳的累積。土壤全氮量累積與分布,與土壤有機碳累積的情形相似,影響土壤全氮量的因子,也與影響土壤有機碳累積的因子相似。在台灣北部地區的森林,單以不同的土綱估算土壤碳貯存量,有其不確定性,由本研究結果,在高海拔地區的土壤有機碳貯存量相對較高。本研究推估土壤碳貯存量之不確定性因子:各樹種的生長時間不同,以我們採樣的方式,僅能表示生態系統演變過程中的一個短暫的時間點,在這之後可能因各森林生態系統碳吸存的潛力不同,土壤碳貯存量的差異會再改變;土壤化育的過程中,成土因子對於土層厚度、含石量和總體密度的影響,造成土壤有機碳貯存量的空間變異大。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-13T05:44:51Z (GMT). No. of bitstreams: 1
ntu-95-R93623019-1.pdf: 2865774 bytes, checksum: c5c96b327f1f3c95e009a47bc97274de (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄
頁碼
中文摘要...................................... I
英文摘要...................................... III
目錄........................................... V
表目錄........................................ VII
圖目錄........................................ VIII
第一章、前言............................................................................................................ 1
第二章、前人研究
第一節、森林生態系統中的碳貯存量............................................................ 3
一、碳在森林生態系統中的貯存方式.................................................... 3
二、全球森林生態系統中碳的分布........................................................ 4
三、土壤有機碳貯存量............................................................................ 5
第二節、森林土壤中碳累積的影響因子........................................................ 8
一、氣候條件............................................................................................ 8
二、地形.................................................................................................... 9
三、土壤性質............................................................................................ 9
四、樹種、生長時間與凋落物............................................................... 11
五、自然與人為的擾動........................................................................... 12
第三節、造林與人工林................................................................................... 13
一、造林與土壤碳吸存........................................................................... 13
二、台灣主要人工林之分布................................................................... 15
第三章、材料與方法
第一節、研究地區環境概況........................................................................... 16
一、地理環境........................................................................................... 16
二、氣候................................................................................................... 19
三、人工林樹種....................................................................................... 22
第二節、樣品之採集....................................................................................... 23
第三節、實驗室分析....................................................................................... 26
一、土壤性質分析................................................................................... 26
二、凋落物性質分析............................................................................... 29
第四節、有機碳貯存量之計算....................................................................... 30
第五節、資料分析........................................................................................... 31
第四章、結果與討論
第一節、土壤有機碳貯存量之估算............................................................... 32
第二節、樹種因子對於土壤有機碳貯存量之影響....................................... 46
一、不同深度土壤有機碳貯存量之分布............................................... 46
二、樹齡與胸高直徑............................................................................... 52
三、凋落物............................................................................................... 54
四、闊葉林與針葉林土壤有機碳貯存量之比較................................... 59
第三節、影響土壤有機碳貯存量之其他環境因子....................................... 61
一、海拔高度及氣候............................................................................... 61
二、土壤質地........................................................................................... 64
三、土壤pH値........................................................................................ 64
四、土壤全氮量與土壤碳氮比............................................................... 68
五、土壤分類........................................................................................... 73
第四節、本研究推估土壤碳貯存量之不確定性........................................... 75
第五章、結論........................................................................................................... 78
第六章、參考文獻................................................................................................... 80
附錄 ................................................................................................................. A1-A11
表目錄
頁碼
表3-1、選定之人工林樹種地理位置與氣候特徵.................................................. 18
表4-1、苗栗關刀山50年生相思樹土壤有機碳貯存量之估算............................ 33
表4-2、苗栗九華山20年生油桐土壤有機碳貯存量之估算................................ 34
表4-3、苗栗司馬限27年生台灣櫸土壤有機碳貯存量之估算............................ 35
表4-4、宜蘭福山20年生柳杉土壤有機碳貯存量之估算.................................... 36
表4-5、台北縣坪林40年生柳杉土壤有機碳貯存量之估算................................ 38
表4-6、宜蘭太平山51年生柳杉土壤有機碳貯存量之估算................................ 39
表4-7、新竹五峰10年生台灣杉土壤有機碳貯存量之估算................................ 40
表4-8、宜蘭棲蘭37年生扁柏土壤有機碳貯存量之估算.................................... 41
表4-9、宜蘭棲蘭16年生巒大杉土壤有機碳貯存量之估算................................ 42
表4-10、宜蘭棲蘭16年生紅檜土壤有機碳貯存量之估算.................................. 44
表4-11、宜蘭礁溪30年生肖楠土壤有機碳貯存量之估算.................................. 45
表4-12、不同人工林樹種不同土壤深度之土壤有機碳貯存量............................ 47
表4-13、不同土壤深度之有機碳貯存量佔一公尺深度內總量之比率................ 51
表4-14、不同齡級之柳杉人工林其胸高直徑(DBH)、凋落物量、
凋落物碳含量與0-100 cm土壤有機碳貯存量........................................ 53
表4-15、不同人工林樹種之凋落物量、全碳量、全氮含量與碳氮比................ 55
表4-16、不同人工林樹種(研究區域)之土壤pH值與質地分析..................... 65
表4-17、不同樹種在不同土壤深度之土壤全氮量與碳氮比................................ 69
表4-18、各個採樣地點之土壤生成環境特徵與土壤分類.................................... 74
圖目錄
頁碼
圖2-1、森林砍伐及人為擾動後對於土壤碳貯存量的變化................................... 14
圖3-1、研究地區採樣位置圖................................................................................... 17
圖3-2、台灣年雨量分布圖....................................................................................... 20
圖3-3、台灣年平均等溫線圖................................................................................... 21
圖3-4、採集地面上0.25 m2面積內所有凋落物..................................................... 25
圖3-5、土壤剖面分為五層不同深度: 0-15 cm、15-30 cm、30-50 cm、
50-75 cm、75-100 cm.................................................................................. 25
圖4-1、不同人工林樹種(a) 0-30 cm、(b) 0-50 cm、(c) 0-100 cm
之土壤有機碳貯存量.................................................................................. 48
圖4-2、不同土壤深度之有機碳貯存量佔一公尺深度內總量之比率.................. 50
圖4-3、凋落物全碳量與(a) 0-15 cm和(b) 0-30 cm
土壤有機碳貯存量之相關性...................................................................... 56
圖4-4、凋落物全碳量與(a) 0-50 cm和(b) 0-100 cm
土壤有機碳貯存量之相關性...................................................................... 57
圖4-5、闊葉林與針葉林0-15cm土壤之(a)有機碳貯存量與(b)全氮量................ 60
圖4-6、(a) 0-30 cm、(b) 0-50 cm和(c) 0-100 cm土壤有機碳貯存量
與海拔高度之相關性.................................................................................. 62
圖4-7、0-30 cm土壤有機碳貯存量與(a)年均溫和(b)年雨量之相關性................ 63
圖4-8、0-15 cm土壤有機碳貯存量與土壤pH値之相關性.................................. 67
圖4-9、不同人工林樹種(a) 0-30 cm, (b) 0-50 cm, 和(c) 0-100 cm
之土壤全氮含量.......................................................................................... 70
圖4-10、0-30 cm土壤全氮量與海拔高度之相關性............................................... 71
圖4-11、 0-30 cm土壤全氮量與(a)年均溫和(b)年雨量之相關性........................... 72
dc.language.isozh-TW
dc.title台灣北部地區主要人工林土壤碳貯存量之估算zh_TW
dc.titleThe Estimation of Total Soil Organic Carbon Storage under Different Plantation Tree Species in Northern Taiwanen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴朝明,蔡呈奇
dc.subject.keyword人工林樹種,土壤有機碳貯存量,海拔高度,氣溫,雨量,凋落物,zh_TW
dc.subject.keywordplantation forest species,soil organic carbon pool,elevation,temperature,precipitation,litter,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2006-07-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
2.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved