Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33685
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor彭雲明(Yun-Ming Pong)
dc.contributor.authorChi-Tian Chenen
dc.contributor.author陳啟天zh_TW
dc.date.accessioned2021-06-13T05:44:35Z-
dc.date.available2012-01-05
dc.date.copyright2011-08-03
dc.date.issued2011
dc.date.submitted2011-07-27
dc.identifier.citationREFERENCES
1. Casella, G. and Berger, R.L. (2002). Statistical Inference, second edition. Pacific Grove, CA: Duxbury.
2. Chow, S. C., Shao, J., and Wang, H. (2002). A note on sample size calculation for mean comparisons based on noncentral t-statistics. Journal of Biopharmaceutical Statistics 12(4): 441–456.
3. Caraco Y. (2004). Genes and the response to drugs. The New England Journal of Medicine 351(27):2867–2869.
4. DerSimonia R. and Laird N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials 7:177-188.
5. Eichebaum M., Spannbrucker N., Steincke B., et al. (1979). Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. European Journal of Clinical Pharmacology 16:183–7.
6. Felson D. T., Anderson J. J., Boers M., Bombardier C., Furst D., Goldsmith C., Katz L. M., Lightfoot R. Jr, Paulus H., Strand V., et al. (1995). American College of Rheumatology preliminary definition of improvement in rheumatoid arthritis. Arthritis and Rheumatism 38(6):727-35.
7. Fukuoka M., Yano S., Giaccone G., Tamura T., Nakagawa K., Douillard J.Y., et al. (2003). Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial). Journal Clinical Oncology 21:2237-2246.
8. Hartung J. (1999). An alternative method for meta-analysis. Biometrical Journal 41(8):901-916.
9. Harrison, D. A. and Brady A. R. (2004). Sample size and power calculations using the noncentral t-distribution. The Stata Journal 4(2): 142-153.
10. Hung H. M. J., Wang S. J., O’Neill. R. T. (2010). Consideration of regional difference in design and analysis of multi-regional trials. Pharmaceutical Statistics 9:173-178.
11. International Conference on Harmonisation. (1998). Tripartite guidance E5, Ethnic factors in the acceptability of foreign data. Federal Register 83:31790–31796.
12. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. (2006). Q&A for the ICH E5 Guldeline on Ethnic Factors in the Acceptability of Foreign Data. Available at: http:// www.ich.org/LOB/media/MEDIA 1194.pdf .
13. Kawai, N., Stein, C., Komiyama O., and Li, Y. (2008). An approach to rationalize partitioning sample size into individual regions in a multiregional trial. Drug Information Journal 42:139-147.
14. Ko F. S., Tsou H. H., Liu J. P., Hsiao C. F. (2010). Sample size determination for a specific region in a multi-regional trial. Journal of Biopharmaceutical Statistics 20: 870-885.
15. Mahgoab A., Idle J. R., Drig L. G., et al. (1977). Polymorphic hydroxylation of debrisoquine in man. Lancet 2:584–586.
16. Ministry of Health, Labor, and Welfare of Japan. (2007). Basic Principles on Global Clinical Trials. Tokyo: MHLW.
17. Quan, H., Zhao, P. L., Zhang, J., Roessner, M., and Aizawa, K. (2009). Sample size considerations for Japanese patients in a multi-regional trial based on MHLW guidance. Pharmaceutical Statistics 9:100-112.
18. Searle S. R., Casella G., and McCulloch C. E. (1992). Variance components. New York: Wiley.
19. Uesaka, H. (2009) Sample size allocation to regions in a multiregional trial. Journal of Biopharmaceutical Statistics 19:580-594.
20. Ueta M, Sotozono C, Tokunaga K, Yabe T, and Kinoshita S. (2007) Strong association between HLA-A_0206 and Stevens-Johnson syndrome in the Japanese. American Journal of Ophthalmology 143(2):367–368.
21. Whitehead A. (2002). Meta-analysis of Controlled Clinical Trials. New York: Wiley.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33685-
dc.description.abstract在藥物臨床試驗的發展過程,銜接性試驗(bridging study)扮演著重要的角色,
但是銜接性試驗始終存在著時間延遲的缺點,導致新藥物的延遲上市與臨床試驗成本的過度花費,為了要消弭藥物延遲與節省試驗成本等等原因,希望能夠建構一個大型臨床試驗,稱之為多區域臨床試驗(multi-regional clinical rial),在此試驗中,同時於世界上多個區域或國家進行試驗,試驗的執行必須依照相同試驗計畫。根據國際醫藥法規協合會(The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH)以及日本厚生勞動省(Ministry of Health, Labor, and Welfare of Japan, MHLW)所提出的指導原則書,研究臨床試驗領域的統計學者提出相當多針對多區域臨床試驗的統計方法,內容包含多區域臨床試驗的評估與設計。然而近期大部份多區域臨床試驗的樣本數決定的方法都假設不同的區域間療效指標(連續或二項)存在一個共同的處理效應。現實的情況中,可以預期的是,因為種族的差異導致區域差異性(regional difference)的存在,例如人種的遺傳基因、生活環境及習慣、醫療體系及習慣等等差異,所以不同區域之處理效應也會有所差異,而非固定且均一的處理效應。對於連續型的指標,提出一個考慮跨區域間藥效異質性的隨機效應模型,並將此模型應用於多區域臨床試驗的設計與評估。而對於二項型的指標,則利用一個power-function 分布描述不同區域間的藥效反應異質性,藉以應用在多區域臨床試驗的設計與評估。另一方面,我們建立參試區域處理效應與整個參試族群處理效應之間的一致性準則,透過此一準則,我們希望決定特定參試區域樣本數時能確保特定參試區域處理效應與整個參試族群處理效應之間的一致性。
zh_TW
dc.description.abstractTo speed up drug development to allow faster access to medicines for patients globally, conducting multi-regional clinical trials incorporating subjects from many countries around the world under the same protocol may be desired. Several statistical methods have been purposed for the design and evaluation of multi-regional clinical trials. However, in most of recent approaches for sample size determination in multi-regional clinical trials, a common treatment effect of the primary endpoint (continuous or binary endpoint) across regions is usually assumed. In practice, it might be expected that there is a difference in treatment effect due to regional difference (e.g., ethnic difference). For continuous endpoint, a random effect model for heterogeneous treatment effect across regions is proposed for the design and evaluation of multi-regional clinical trials in this dissertation. For binary endpoint, a power-function distribution is used to describe heterogeneous treatment effect across regions for the design and evaluation of multi-regional clinical trials. We also address consideration on the determination of the number of subjects in a specific region to establish the consistency of treatment effects between the specific region and the entire group.en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:44:35Z (GMT). No. of bitstreams: 1
ntu-100-D95621202-1.pdf: 1079617 bytes, checksum: c496cc8e93bf37b68f76467509ad4c99 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContent
Chapter 1 Introduction 1
1.1 Multi-regional clinical trials 1
1.2 Rationalize Partitioning Sample Size in a MRCT 4
1.3 Sample size considerations for Japanese patients 8
1.4 Sample size determination for a specific region 12
1.5 Consideration of regional difference in a MRCT 15
1.6 Motivations and Objectives 18
Chapter 2 Design and evaluation of MRCTs for continuous endpoints 21
2.1 Random effect model for heterogeneous treatment effect across regions 21
2.2 Sample size determination 24
2.3 Applying the result of the MRCT to the specific region 25
2.4 Numerical examples 27
Chapter 3 Design and evaluation of MRCTs for binary endpoints 29
3.1 Bernoulli-power-function model for heterogeneous response rate 29
3.2 Sample size determination 32
3.3 Applying the result of the MRCT to the specific region 33
3.4 Numerical examples 34
Chapter 4 Examples 37
4.1 A hypothetical continuous example: a new LDL-C drug case 37
4.2 A hypothetical binary example: A new DMARD case 39
Chapter 5 Concluding remarks and future work 42
References 49
dc.language.isoen
dc.title考慮區域性差異之多區域藥物臨床試驗之評估與設計zh_TW
dc.titleDesign and Evaluation of Multi-regional Clinical Trials with
Heterogeneous Treatment Effect Across Regions
en
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.coadvisor蕭金福(Chin-Fu Hsiao)
dc.contributor.oralexamcommittee廖振鐸(Chen-Tuo Liao),黃郁芬(Yu-Fen Huang),鄒小蕙(Hsiao-Hui Tsou)
dc.subject.keyword銜接性試驗,種族差異,多區域臨床試驗,隨機效應模型,power-function 分布,zh_TW
dc.subject.keywordBridging study,ethnic effect,multi-regional clinical trials,random effect model,power-function distribution,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2011-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
dc.date.embargo-terms2300-01-01
dc.date.embargo-lift2300-01-01-
Appears in Collections:農藝學系

Files in This Item:
File SizeFormat 
ntu-100-1.pdf
  Restricted Access
1.05 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved