Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33670
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏嗣鈞(Hsu-Chun Yen)
dc.contributor.authorTzu-Hsuan Changen
dc.contributor.author張子璿zh_TW
dc.date.accessioned2021-06-13T05:44:24Z-
dc.date.available2006-07-20
dc.date.copyright2006-07-20
dc.date.issued2006
dc.date.submitted2006-07-14
dc.identifier.citation[1] D. Deutsch, ``Quantum Theory, the Church-Turing Principle, and the Universal Quantum Computer', Proceedings of the Royal Society of London, Vol. A400, 1985, pp. 97-117
[2] P. W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, Proc. 35nd Annual Symposium on Foundations of Computer Science (Shafi Goldwasser, ed.), page 124-134, IEEE Computer Society Press (1994).
[3] A. Ambainis, E. Bachy, A. Nayakz, A. Vishwanathx, J. Watrous, “ One-Dimensional Quantum Walks”, ACM Symposium on Theory of Computing, page 37-47, 2001.
[4] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gut-mann, and D. A. Spielman, in Proc. 35th Annual ACM Symposium on Theory of Computing (STOC 2003), page 59–68, 2003.
[5] N. Shenvi, J. Kempe, and K. B. Whaley, Phys. Rev. A 8 67, 052307 (2003).
[6] J. Kempe, Contemp. Contemporary Physics, page 307 - 327 Volume 44, Number 4 / July-August 2003.
[7] Gregor Tanner , “From quantum graphs to quantum random walks”, October 6, 2005, quant-ph/0504224, (unpublished).
[8] Viv Kendon, “Quantum walks on general graphs”, quant-ph/0306140, 2005, (unpublished).
[9] L. K. Grover, Phys. Rev. Lett. 78, 325 (1997).
[10] L. K. Grover, Proceedings of the 30th Annual ACM Symposium on Theory of Computing, ACM Press, NY (1998), page 53-68.
[11] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK, 2000.
[12] R. P. Feynman and A. R. Hibbs, “Quantum mechanics and path integrals,” International series in pure and applied physics. McGraw-Hill, New York, 1965
[13] D. Meyer. “From quantum cellular automata to quantum lattice gases,” Journal of Statistical Physics, 85: 551-574, 1996.
[14] J. Watrous. “Quantum simulations of classical random walks and undirected graph connectivity,” Journal of Computer and System Sciences, page 376-391, 2001.
[15] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani. “Quantum walks on graphs.” In Proc. 33th STOC, ACM , pages 50-59.
[16] C. Moore and A. Russell. “Quantum walks on the hypercube,” Proc. RANDOM 2002, pp. 164-178, Cambridge, MA, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33670-
dc.description.abstractIn this thesis, we discover a new way to analyze quantum random walks over general graphs. We first define distance of the graph to compare classical random walks and quantum random walks. Then we run unitary quantum random walk algorithm over general graphs and do discover the existence of the advantages of the quantum walks. Next we perform the algorithm to solve a tiny problem “Tile Puzzle”. During the simulation, we find out the rules in how to choose the solution of edge-coloring problems. Finally, we define the general form of unitary quantum random walk and discuss the characteristic of the formula.en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:44:24Z (GMT). No. of bitstreams: 1
ntu-95-R93921034-1.pdf: 578137 bytes, checksum: 7fd88d9867a06d166052734a9bf0f9d0 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsContents
0. Abstract 0
1 Introduction 1
2 Preliminaries 4
2.1 Quantum Computation 4
2.1.1 Quantum Bit 5
2.1.2 Quantum Gates 6
2.1.3 Quantum Algorithms 8
2.2 Random Walks 10
3 Quantum Random Walk 12
3.1 Quantum Random Walk on a Line 12
3.2 Quantum Random Walk on higher Dimension 14
3.3 Quantum Random Walk on general Graph 16
4 Quantum Random Walk on General Graph 19
4.1 Syntax and Constraints of Quantum Random Walk19
4.1.1 Self-Loop and the Definition of Regular Graph19
4.1.2 Constraints of Unitary labeling 20
4.1.3 Edge Coloring 21
4.2 Unitary Quantum Random Walk Algorithm 24
4.3 Simulation of Quantum random Walk on the General Graph 27
4.4 Tile-Puzzle Problems 32
5 General Formula of Quantum Random Walk 36
5.1 Quantum walk with Unitary Labeling (QWUL) 36
5.2 Characteristic observing of Quantum Random Walk39
6 Conclusions 43
7 References 44
dc.language.isoen
dc.subject測量的量子隨機漫步zh_TW
dc.subject隨機漫步zh_TW
dc.subject單位量子隨機漫步zh_TW
dc.subjectquantum random walken
dc.subjectquantum random walk with measurementen
dc.subjectQWIMen
dc.subjectQWULen
dc.title分析單一標記的量子隨機漫步zh_TW
dc.titleAnalyzing Quantum Random Walks with Unitary Labelingen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭斯彥(Sy-Yen Kuo),黃秋煌(Chua-Huang Huang),莊仁輝(Jen-Hui Chuang),雷欽隆(Chin-Laung Lei)
dc.subject.keyword隨機漫步,單位量子隨機漫步,測量的量子隨機漫步,zh_TW
dc.subject.keywordquantum random walk,QWUL,QWIM,quantum random walk with measurement,en
dc.relation.page45
dc.rights.note有償授權
dc.date.accepted2006-07-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
564.59 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved