請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33659完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王唯工 | |
| dc.contributor.author | " Pin-tsun,Chao" | en |
| dc.contributor.author | 趙品尊 | zh_TW |
| dc.date.accessioned | 2021-06-13T05:44:17Z | - |
| dc.date.available | 2007-07-17 | |
| dc.date.copyright | 2006-07-17 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-14 | |
| dc.identifier.citation | 參考文獻
[1] Moore K.L. The Development Human, 4th edition, W.B. Saunders Company; 1988. 中譯本第63頁 [2]中華民國行政院衛生署公告 www.doh.gov.tw/statistic/data/死因摘要,2002 [3]U.S. National Center for Health Statistics, National Vital Statistics Report, www.cdc.gov/nchs [4] Milnor WR. Hemodynamics. Baltimore, Williams & Wilkins Co, 1989. [5] Wade O.L.and Bishop J.M. Cardiac Output and Regional Blood Flow. Oxford: Blackwell,1962. [6] Lin Wang Y Y, Chang C C, Chen J C, Hsiu H and Wang W K. Pressure wave propagation in a distensible tube arterial model with radial dilation. IEEE Eng. Med. Biol. Mag, 16, 51–6, 1997. [7] Lin Wang Y Y, Lai W C, Hsiu H, Jan M Y and Wang W K. The effect of length on the fundamental resonance frequency of the arterial models with radial dilatation. IEEE Trans.Biomed. Eng, 47, 313–8, 2000. [8] Lin Wang Y Y, Jan M Y, Hsiu H and Wang W K. Hemodynamics with total energy, Conf. Proc. 2nd Joint EMBS-BMES Conf. (Houston, TX, Oct. 2002) pp 1240–1 [9]Lin Wang Y Y, Jan M Y, Wang G C, Bau J G, Wang W K. Pressure pulse velocity is related to the longitudinal elastic properties of the artery, Phys. Meas., 25, 1397–1403, 2004. [10]Lin Wang Y Y, Jan M Y, Shyu C S, Chiang C A, WangWK. The natural frequencies of the arterial system and their relation to the heart rate. IEEE Trans. Biomed. Eng., 51, 193–5, 2004. [11] Avolio A P, Kerkhof P L. On tubes, strings, and resonance in the arterial system—what makes the beat go on?, IEEE Trans. Biomed. Eng., 51, 196–7, 2004. [12]Herbert H. Lipowsky, Microvascular Rheology and Hemodynamics, Microcirculation, Vol 12, 5–15, 2005 [13] Zweifach BW, Lipowsky HH. Pressure–flow relations in blood and lymph microcirculation. In: Handbook of Physiology—The Cardiovascular System IV (EM Renkin, CC Michel, Eds.) Bethesda, MD: American Physiological Society, 251–307, 1984. [14] E.N. Marieb, Human Anatomy and Physiology,p647,p859, The Benjamin/Cummings Publishing Company, Inc, 1989. [15] Nichols W W, O’Rourke M F. McDonald’s Blood Flow in Arteries, 4th edn (London: Edward Arnold), 1998. [16] Lamb H, Hydrodynamics. New York: Dover, 1932. [17] Patel DJ, Janicki JS, Carew TE. Static anisotropic elastic properties of the aorta in living dogs. Circ.Res, 25, 765-9, 1969. [18] Gray NA Jr, Selzman CH. Current status of the total artificial heart. Am Heart J. Jul;152(1):4-10,2006. [19] Shadwick RE, Goslin JM. Arterial mechanics in the fin whale suggest a unique hemodynamic design. Am J Physiol, Sep;267(3 Pt 2), R805-18, 1994. [20]許昕,動脈系統屆藉共振機制傳遞血壓波之研究,國立台灣大學電機工程學研究所博士論文,2001。 [21]郭玉誠,血壓諧波變異係數於醫學工程之應用,國立台灣大學電機工程學研究所博士論文,2004。 [22]詹明宜,動脈與微循環之血液動力學關聯性研究,國立台灣大學電機工程學研究所博士論文,2000。 [23] Chao PT, Jan MY, Huang CY, Wang Lin YY, Wang WK. Wavelet-based fluctuation analysis of laser doppler blood flux on renal cortex in rats, Proceedings of the 23th Annual International Conference of the IEEE Biomedical Engineering society, Paper No. 1080, 2001. [24] Wang WK, Lo YY, Chiang Y, Hsu TL, Wang YY. Resonance of organs with the heart. In: Young WJ, editor. Biomedical engineering-an International Sympos ium. Washington: Hemisphere; p 259-68, 1989. [25]Young S T, Wang W K, Chang L S, Kuo T S. Specific frequency properties of the renal and the superior mesenteric arterial beds in rats. Cardiovasc Res, 23, 465–467, 1989. [26]Young S T, Wang W K, Chang L S, Kuo T S. The filter properties of the arterial beds of organs in rats. Acta Physiol. Scand. 145, 401–6, 1992. [27] Yu, G.L., Y.Y. Wang Lin and W.K. Wang. Resonance in the kidney system of rats. Am. J. Physiol. 267: H1544–1548, 1994. [28] Hsu T L, Chiang Y, Wang W K, Chao P T, Bao J G, Lin Wang Y Y. Pulse analysis as a possible real-time biomarker complementary to SGPT and SGOT for monitoring acute hepatotoxicity. Toxicol Mech Methods, 13, 181–6, 2003. [29] O’Rourke M F, Nichols WW, Safar M E. Pulse waveform analysis and arterial stiffness: realism can replace evangelism and skepticism. J Hypertension, 22, 1633–4, 2004. [30] Lee JJ, Tyml K, Menkis AH, Novick RJ, Mckenzie FN, Evaluation of pulsatile and nonpulsatile flow in capillaries of goat skeletal muscle using intravital microscopy. Microvasc Res. 1994 Nov,48(3),316-27,1994. [31] Kaley G, Altura BM(eds): Microcirculation (Volum I). Baltimore, University Park Press, 1977. [32] Zwaifach BW, Quantitative studies of microcirculatory structure and function, I: analysis of pressure distribution in the terminal vascular bed in cat mesentery. Circ Res 34:843–857, 1974. [33] Zweifach B W, Microcirculation Annu. Rev. Physiol. 35 117–50,1973. [34] O'Rourke MF, Safer ME and Dzau VJ (eds.): Arterial Vasodilation: Mechanism and therapy. Philadelphia, LEA & FEBIGER, 1993. [35] Michel E. Safa, Peripheral Pulse Pressure, Large Arteries, and Microvessels Hypertension, 44, 121, 2004. [36] Jan M Y, Hsiu H, Hsu T L, Wang Lin Y Y and Wang W K.The importance of the pulsatile microcirculation in relation to hypertension. IEEE Eng. Med. Biol, 19, 106–11, 2000. [37]姜智昂,動脈系統之頻率匹配,國立台灣大學電機工程學研究所碩士論文,2001。 [38] Eriksson E, Myrhage R. Microvascular dimensions and blood flow in skeletal muscle. Acta Physiol Scand. 1972 Oct;86(2):211-22, 1972. [39] P.T.Chao, M.Y. Jan, H. Hsiu, T.L. Hsu, W.K.Wang, Y.Y. Lin Wang. Evaluating Microcirculation by Pulsatile Laser Doppler Signal. Phys. Med. Biol. 51, 845–854, 2006. [40] Microcirculatory Technology , edited by Baker CH and Nastuk WL. Orlando, Florida: Academic Press, Harcourt Brace Jovanovich, 1986, [41] Nilsson GE, Tenland T, Oberg PA., Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng, 1980 Oct;27 (10),597-604, 1980. [42] Frank RS, Hochmuth RM, An investigation of particle flow through capillary models with the resistive pulse technique. J Biomech Eng. 1987 May;109(2):103-9, 1987. [43] Skov K, Mulvany MJ. Structure of renal afferent arterioles in the pathogenesis of hypertension. Acta Physiol. Scand. 181 397–405, 2004. [44] Yamamoto T, Tomura Y, Tanaka H, Kajiya F. In vivo visualization of characteristics of renal microcirculation in hypertensive and diabetic rats. Am. J. Physiol. Renal Physiol. 281 F571–7, 2001. [45] Iversen B M, Amann K, Kvam F I, Wang X, Ofstad J. Increased glomerular capillary pressure and size mediate glomerulosclerosis in SHR juxtamedullary cortex Am. J. Physiol. (Pt 2) 274, F365–73, 1998. [46] Anderson W P, Kett M M, Stevenson K M, Edgley A J, Denton K M, Fitzgerald S M. Renovascular hypertension: structural changes in the renal vasculature Hypertension 36 648–52, 2000. [47] Ketta M M, Bergstromb G, Alcornc D, John F Bertramd, Warwick P Andersona. Renal vascular resistance properties and glomerular protection in early established SHR hypertension. J. Hypertension 19 1505–12, 2001. [48] Roald AB, Ofstad J, Iversen BM, Attenuated buffering of renal perfusion pressure variation in juxtamedullary cortex in SHR, Am J Physiol Renal Physiol. Mar;282(3):F506-11, 2002. [49] Humeau A, Koitka A, Saumet JL, L'Huillier JP, Wavelet de-noising of laser Doppler reactive hyperemia signals to diagnose peripheral arterial occlusive diseases, IEEE Trans Biomed Eng. 2002 Nov;49(11):1369-71,2002. [50]Rangrraj M R, Biomedical Signal Processing: A Case-Study Approach (New York: Wiley), 2002. [51] Marque V, Kieffer P, Atkinson J, Lartaud-Idjouadiene I. Elastic properties and composition of the aortic wall in old spontaneously hypertensive rats Hypertension 34 415–22, 1999. [52] Allen J, Oates C P, Lees T A, Murray A. Photoplethysmography detection of lower limb peripheral arterial occlusive disease: a comparison of pulse timing, amplitude and shape characteristics Physiol. Meas. 26 811–21, 2005. [53] Erts R, Spigulis J, Kukulis I, Ozols M. Bilateral photoplethysmography studies of the leg arterial stenosis Physiol. Meas. 26 865–74, 2005. [54] Farkas K, Kolossvary E, Jarai Z, Nemcsik J, Farsang C. Non-invasive assessment ofmicrovascular endothelial function by laser Doppler flowmetry in patients with essential hypertension Atherosclerosis 173 97–102, 2004. [55]Stewart J, Kohen A, Brouder D, Rahim F, Adler S, Garrick R, Goligorsky M S, Noninvasive interrogation of microvasculature for signs of endothelial dysfunction in patients with chronic renal failure Am. J. Physiol. Heart Circ. Physiol. 287 H2687–96, 2004. [56] C.D.Bertram, F. Pythoud, N.Steriopulos, J.-J Meister. Pulse wave attenuation measurement by linear and nonlinear methods in nonlinearly elastic tubes, Med Eng Phys, 21, P155-166, 1999. [57] A.W.Khir, K.H.Parker, Measurement of the wave speed and reflected waves in elastic tubes and bifurcation, J of Biomechanics, 35, p775-783, 2002. [58] P. T. Chao, M. Y. Jan, H. Hsiu, W. K. Wang, Yuh-Ying Lin Wang, 'COMPARISON OF RENAL CORTICAL FLOW BETWEEN SHR AND WKY BASED ON WAVELET TRANSFORM'. Proceedings of International Federation for Medical and Biological Engineering EMBEC 02’ Vienna, Austria,Vol 3, p502-p503, 2002. [59] Jan MY, Hsin H, Wang Lin YY, Wang WK. A Modified fast Laser Doppler Flowmetry to measure the pulsatile microcirculation in rats. Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20, No. 1, pp. 415-416,1998. [60] MY Jan, J.G. Bau, H. Hsiu, P.T. Chao, W.K. Wang. A Study on the Wave Propagation Property – III: with loop and microcirculation. Proceeding of the IASTED International Conference on Biomedical Engineering, p114-117, Hawaii, USA, 2004 [61] L. McCormack, E. Cauldwell and B. Anson, Brachial and antebrachial arterial patterns: a study of 750 extremities. Surg. Gynecol. Obstet. 96, pp. 43–48, 1953. [62] Gellman H, Botte MJ, Shankwiler J, Gelberman RH. Arterial patterns of the deep and superficial palmar arches. Clin Orthop Relat Res, Feb;(383):41-6.Review, 2001. [63] K.U. Ingard: Fundamentals of Waves and Oscillation, Cambridge University Press,1988. [64] Hsiu H , Chao PT, Jan MY, Hsu WC, Wang WK. A study on the wave propagation property II In arterial system of rats. The IASTED international conference on Biomechanics, BioMech 2004, Hawaii, USA, 2004. [65]詹明宜,共振對血壓波影響之模擬。國立陽明大學醫學工程研究所碩士論文,1993。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33659 | - |
| dc.description.abstract | 中文摘要
循環系統是人體當中維持生命最重要的系統。西方醫學目前對於循環系統的想法,是將心臟視為一個幫浦,將血液打入血管中,然後以推動流量的想法,透過血管將血送進組織當中。目前雖然由此理論所衍生出來的相關醫藥產業,每年產值高達數千億美金,然而對於有關高血壓等目前盛行的循環系統疾病,仍無法提出其原因與解決之道。 王唯工教授與王林玉英教授所提出的徑向共振理論,認為循環系統是以壓力來傳遞能量,而非透過流量來傳遞。也因此這個系統如何處理壓力傳遞到末端之後的狀況,將會影響這個系統的穩定性,同時也是目前為止相關血液流體力學理論認為極需要解決的問題。 動脈系統的最末端,最主要是透過網狀的微循環連接到微靜脈,也因此研究微循環之結構與功能,長久以來都是極為重要的課題。而較靠近心臟端的動脈,大多以環狀方式連結(loop or arch),例如四肢的末端、器官內部,此種結構以傳統流量理論幾乎無法解釋。因此本論文主要探討的循環系統末端範圍有二:環狀結構與微循環。我們將試著從徑向共振理論出發,來探討此兩種結構在生理上所代表的意義以及可能的功能。 在微循環的部分,我們討論了徑向共振理論對微循環的看法,並且試圖驗證傳統流量理論將微循環視為強反射點的看法是否正確。此外,由於微循環是以脈動方式運作,因此我們提出一套新的訊號分析方式,用來分辨不同動物模型的腎臟皮質微循環。我們利用雷射都卜勒血流計,比較傳統觀察直流流量值和我們提出的脈動法,結果發現脈動法能清楚分辨差異。再次說明了徑向振動在生理中處處可見,並且有其應用的空間。 目前對環狀結構的研究,大多數報告為解剖學上型態的敘述。但我們認為此結構有其特殊的功能,如可以將反射減小;或者主頻位置不會因為環狀結構的破壞而改變等等。我們進行的水管實驗以及動物實驗均證明了上面所敘述的功能。 透過徑向共振理論對於循環系統各個部分的看法,我們不僅提出一更有力的訊號分析方法來分析微循環,同時也替動脈系統中的環狀結構,找到了其存在之必要性。未來也相信可以經由本理論,提供更多臨床上對病症之治療與評估的方法。 | zh_TW |
| dc.description.abstract | Abstract
The circulatory system is the most important for maintaining life. Modern western medicine treats heart as a pump, and considers heart pumps blood into artery. However, it is hard to believe that heart can overcome the high resistance of the arterial system with only 1.7Watt output power. Besides, there is no efficient solution on nowadays prevailing cardiovascular disease. Since the potential energy on aorta in vivo is more than 90%, which is much more than the axial kinetic energy, radial resonance theory(RRT), proposed by Dr. Wang and Dr. Lin, infers that circulatory system deliver energy by pressure, not flow. In one pressure-transmission system, the terminal condition of system will affect the stability of system. Here we will discuss two structures of arterial terminals: loop structure and microcirculation. We will discuss the meaning and function of these two structures based on RRT. The terminal of arterial system is formed by net-like microcirculatory bed, and microcirculatory function and anatomy has been studied for long time. Here we discuss the microcirculation function based on RRT, and try to verify if microcirculation as strong reflection site, which is proposed by reflection theory. Using the heartbeat as a trigger, we investigated whether the relation between pressure and flux can be used to discriminate different microcirculatory conditions. We propose the three pulsatile indices for evaluating the microcirculation condition from the normalized pressure and flux segment with a synchronized-averaging method. The abdominal aortic blood pressure and renal cortex flux (RCF) signals were measured in spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). The mean value of the RCF did not differ between SHR and WKY. However, both PDT and FRT were longer in SHR than in WKY. We propose that a new dimension for comparing the LDF signals, which the results from the present study show, can be used to discriminate RCF signals that cannot be discriminated using traditional methods. Researches for loop structure nowadays are mostly anatomical description and treat loop as useless in hemodynamics. However, based on the availability on body, we think it must contain more specific function, such as reduction of reflection or maintain of main frequency. Tube experiments and animal experiments were conducted to prove the functions mentioned. It seems that the loop structure is the best design after long evolution. Through the vision of RRT, we not only proposed one new signal analysis method to analyze microcirculation, but also find the importance of loop structure in arterial system. In the future, we believe that with the help of this theory, we can provide more efficient treatment and evaluation method for clinical use. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T05:44:17Z (GMT). No. of bitstreams: 1 ntu-95-F89921155-1.pdf: 4901972 bytes, checksum: c1e1c54ad403de429c0e8910d2ea905f (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目錄
目錄 i 圖表次 ii 中文摘要 v 英文摘要 vii 第一章 緒論 1 第二章 血液流體力學理論模型探討 7 2-1 傳統血液流體力學 2-2 徑向共振理論 2-3 脈動之重要性 第三章 徑向共振理論對微循環之觀點與脈動法之介紹 17 3-1 微循環之血液流體動力學 3-2 傳統流量理論與徑向共振理論對微循環之不同看法 3-3 脈動法介紹 3-4 結論 第四章 徑向共振理論對環狀結構之觀點 51 4-1 理論基礎 4-2 長直管、分支結構、環狀結構不同結構對反射波之影響 4-3 分支結構與環狀結構之比較—主頻位置與強度 4-4 破壞環狀結構在生理上之影響—動物實驗 4-5 結論 第五章 結論與未來展望 79 參考文獻 81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微循環 | zh_TW |
| dc.subject | 徑向共振理論 | zh_TW |
| dc.subject | 血液流體力學 | zh_TW |
| dc.subject | 雷射都卜勒 | zh_TW |
| dc.subject | 環狀結構 | zh_TW |
| dc.subject | loop structure | en |
| dc.subject | radial resonance theory | en |
| dc.subject | laser Doppler | en |
| dc.subject | microcirculation | en |
| dc.subject | hemodynamics | en |
| dc.title | 以徑向共振理論探討動脈系統之末端:環狀結構與微循環 | zh_TW |
| dc.title | A Study of Arterial System Terminal based on Radial Resonance Theory: Loop and Microcirculation Structure | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李嗣涔,林玉英,鍾孝文,李百祺,林啟萬,李世炳,詹明宜 | |
| dc.subject.keyword | 血液流體力學,環狀結構,微循環,雷射都卜勒,徑向共振理論, | zh_TW |
| dc.subject.keyword | hemodynamics,loop structure,microcirculation,laser Doppler,radial resonance theory, | en |
| dc.relation.page | 90 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 4.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
