Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33655
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂宗昕(Chung-Hsin Lu)
dc.contributor.authorChi-Yuan Huen
dc.contributor.author胡繼元zh_TW
dc.date.accessioned2021-06-13T05:44:14Z-
dc.date.available2010-07-18
dc.date.copyright2006-07-18
dc.date.issued2006
dc.date.submitted2006-07-14
dc.identifier.citation[1]A. Fujishima, K. Honda, Nature 238 (1972) 37.
[2]Phase Diagrams for Ceramicists, Fig. 4150-4999, The American Ceramic Society, Inc. 76 (1975).
[3] W. W. So, S. B. Park, K. J. Kim, J. Colloid Interf. Sci. 191 (1997) 398.
[4] R. J. Gonzalez, R. Zallen, H. Beger, Phys. Rev. B55 (1997) 7014.
[5] J. S. Kasper, K. D. Lomsdale, International Tables of X-ray Crystallography, 2nd ed 1959.
[6]T. E. Weirich, M. Winterer, S. Seifried, H. Hahn, and H. Fuess, Ultramicroscopy 81 (2000) 263.
[7] Power Diffraction File, Card No. 21-1272, Joint Committee on Power Diffraction Standards, Swarthmore, PA.
[8] Power Diffraction File, Card No. 21-1276, Joint Committee on Power Diffraction Standard, Swarthmore, PA.
[9] J. Muscat, N. M. Harrison, G. Thornton, Phys. Rev. B59 (1999)2320.
[10] J. D. DeLoach, C. R. Aita, J. Vac. Sci. Technol. A16 (1998) 1963.
[11] D. Nicholls, Complexes and First-Row Transition Elements, 1st ed 1974.
[12] R. Dannenberg, P. Greene, Thin Solid Films, 360 (2000) 122.
[13] Y. Nosaka, M. A. Fox, J. Phys. Chem. 92 (1988) 1893.
[14] R. W. Matthews, J. Catal. 113 (1988) 549.
[15] H. Anders, G. Michael, Chem, Rev. 95 (1995) 49.
[16] A. Mills, S. LeHunte, J. Photochem. Photobio. A108 (1997) 1.
[17] M. R. Hoffmann, S. T. Martin, W. Y. Choi, D. W. Bahnemann, Chem. Rev. 95 (1995) 69.
[18] M. A. Fox, M. T. Dulay, Chem. Rev. 93 (1995) 341.
[19] A. L. Linsebigler, G. Q. Lu, J. T. Yates, Chem. Rev. 95 (1995) 735.
[20] A. Fujishima, K. Hashimoto, T. Watanabe, TiO2 Photocatalysis Fundamentals and Applications, 1st ed, BKC Inc. (1999).
[21] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Adv. Mate. 10 (1998) 135.
[22] J. N. Wilson, H. Idriss, J. Catal. 214 (2003)46.
[23] Y. Bessekhouad, D. Robert, J. V. Weber, J. Photoch. Photobio. A157 (2003) 47.
[24] T. Umebayashi, T. Yamaki, S. Tanaka, K. Asai, Chem. Lett. 32 (2003) 330.
[25] B. Sun, A. V. Vorontsov, P. G. Smirniotis, Langmuir, 19 (2003) 3151.
[26] K. Macounova, H. Krysova, J. Ludvik, J. Jirkovsky, J. Photoch. Photobio. A156 (2003) 273.
[27] S. N. Frank, A. J. Bard, J. Am. Chem. Soc. 99 (1977) 303.
[28] S. N. Frank, A. J. Bard, J. Phys. Chem. 81 (1977) 1484.
[29] B. O’Regan, M. Gratze, Nature, 353 (1991).
[30] K. D. Schierbaum, U. K. Kirner, J. F. Geiger, M. Gopel, Sensors and Actuators, B4 (1991) 87.
[31] I. Hayakawa, Y. Iwamotoa, K. Kikutab, S. Hiranob, Sensors and Actuators, B62 (2002) 55.
[32] W. J. Albery, P. N. Bartlett, J. Electrochem. Soc. 131 (1884) 315.
[33] G. Rothenberger, J. Moster, M. Gratzel, J. Am. Chem. Soc. 107 (1985) 8054.
[34] M. A. Fox, New J. Chem. 11(1987) 129.
[35] K. M. Reddy, C. V. G. Reddy, S. V. Manorama, J. Solid State Chem. 158 (2001) 180.
[36] G. L. Li, G. H. Wang, Nanostruct. Mater. 11 (1999) 663.
[37] M. Hirano, C. Nakahara, K. Ota, O. Tanaike, M. Inagaki, J. Solid State Chem. 170 (2003) 39.
[38] S. Jeon, P. V. Braun, Chem. Mater. 15 (2003)1256.
[39] Y. V. Kolen’ko, A. A. Burukhin, B. R. Churagulov, N. N. Oleynikov, Mater. Lett. 57 (2003) 1124.
[40] H.Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7 (1995) 663.
[41] T. Nishide, F. Mizukami, Thin Solid Films 353 (1999) 67.
[42] J. Yu, X. Zhao, Q. Zhao, Thin Solid Films 379 (2000) 7.
[43] R. S. Sonawane, S. G. Hegde, M. K. Dongare, Mater. Chem. Phys. 77 (2002) 744.
[44] J. Yu, J. C. Yu, W. Ho, Z. Jiang, New J. Chem. 26 (2002) 607.
[45] C. Gullard, B. Beaugiraud, C. Dutriez, J. M. Herrmann, H. Jaffrezic, N. Jaffrezic- Renault, M. Lacroix, Appl. Catal. B39 (2002) 331.
[46] J. Yu, X. Zhao, Mater. Res. Bull. 36 (2001) 97.
[47] A. P. Xagas, E. Androulaki, A. Hiskia, P. Falaras, Thin Solid Films 357 (1999) 173.
[48] Z. Wang, U. Helmersson, P. Kall, Thin Solid Films 405 (2002) 50.
[49] J. Yu, X. Zhao, Mater. Res. Bull. 35 (2000) 1293.
[50] J. Yu, X. Zhao, Q. Zhao, Mater. Chem. Phys. 69 (2001) 25.
[51] J. C. Yu, J. Yu, H. Y. Tang, L. Zhang, J. Mater. Chem. 12 (2002) 81.
[52] P. Zeman, S. Takabayashi, Surf. Coat. Tech. 153 (2002) 93.
[53] S. K. Zheng, T. M. Wang, G. Xiang, C. Wang, Vacuum 62 (2001) 361.
[54] D. Dumitriu, A. R. Bally, C. Ballif, P. Hones, P. E. Schmid, R. Sanjines, F. Levy, V. I. Parvulescu, Appl. Catal. B-Environ. 25 (2000) 83.
[55] S. Takeda, S. Suzuki, H. Odaka, H. Hosono, Thin Solid Films 392 (2001) 338.
[56] T. Wang, H. Wang, P. Xu, X. Zhao, Y. Lin, S. Chao, Thin Solid Films 334 (1998) 103.
[57] B. R. Weinberger, R. B. Garber, Appl. Phys. Lett. 66 (1995) 2409.
[58] P. Zeman, S. Takabayashi, J. Vac. Sci. Technol. A20 (2002) 388.
[59] A. Yasumori, H. Shinoda, Y. Kameshima, S. Hyashi, K. Okada, J. Mater. Chem. 11 (2001) 1253.
[60] J. Yu, X. Zhao, Q. Zhao, Thin Solid Films 379 (2000) 7.
[61] R. Asali, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Scince 293 (2001) 269.
[62] K. Sayama, H. Arakawa, J. Photochem. Photobio. A 77 (1994) 243.
[63] H. Kato, A. Kudo, Catal. Lett. 58 (1999) 153.
[64] K. Domen, J. N. Kondo, M. Hara, T. Takata, Bull. Chem. Soc. Jpn. 73 (2000) 1307.
[65] D. W. Huang, H. G. Kim, J. Kim, K. Y. Cha, Y. G. Kim, J. S. Lee, J. Caltal. 193 (2000) 40.
[66] J. M. Lehn, J. P. Sauvage, R. Ziessel, Nouv. J. Chim. 4 (1980) 623.
[67] K. Sayama, H. Arakawa, K. Domen, Catal. Today 28 (1996) 175.
[68] A. Kudo, H. Kato, S. Nakagawa, J. Phys. Chem. B 104 (2000) 571.
[69] M. Machida, J. Yabunaka, T. Kijima, Chem. Mater. 12 (2000)812.
[70] J. Yin, Z. Zou, J. Ye, J. Phys. Chem. B 107 (2003) 4936.
[71] Power diffraction file, Card No. 71-0871, Joint Committee on power diffraction Standards, Swarthmore, PA.
[72] X. S.Gao, X. Y. Chen, J. Yin, J. Wu, Z. G. Liu, J. Meter. Sci. 35 (2002) 5421.
[73] K. Kawahara, K. Suzuki, Y. Ohko, T. Tatsuma, Phys. Chem. Chem. Phys. 7 (2005) 3851.
[73] J. Yin, Z. Zou, J. Ye, J. Phys. Chem. B 108 (2004) 8888.
[74] J. C. Xu, Y. L. Shi, J. E. Huang, B. Wang, H. L. Li, J. Mol. Catal. A: Chem. 219 (2004) 351.
[75] A. J. Bard, J. Electrochem. Soc. 10 (1979) 59.
[76] A. Fuerte. M. D. Hernandez-Alonso, A. Martinez-Arias, M. Fernandes-Garcia, J. C. Conesa, J. Soria, Chem. Commun. 24 (2001) 2718.
[77] H. Yamashita, Y. Ichihashi, M. Takeuchi, S. Kishiguchi, M. Anpo, J. Synchrotron Radiat. 6 (1999) 451.
[78] M. R. Hoffmann, T.S. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 95 (1995) 69.
[79] D. Dvoranova, V. Brezova, M. Mazur, M. A. Malati, Appl. Cat. B: Environ. 37 (2002) 91.
[80] S. Klosek, D. Raftery, J. Phys. Chem. B 105 (2001) 2815.
[81] M. Windholz, The Merk Index, 10th ed, Merck & Co. Rahway, 1983.
[82] Z. Xinhua, Z. Jianmin, Z. Shunhua, L. Zhiguo, M. Naiben, H. Dietrich, J. Cryst. Growth 284 (2005) 486.
[83] Woodward DI, Reaney, Acta Crystallogr. Sect. B-Struct. Sci. 61 (2005) 387.
[84] N. Negishi, T. Iyoda, K. Hashimoto, A. Fujishima, Chem. Lett. (1995) 841.
[85] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 95 (1995) 69.
[86] X. Fu, W. Zeltner, M. A. Anderson, Appl. Catal. B (1995) 209.
[87] D. F. Oills, E. Pelizzetti, N. Serpone, Environ. Sci. Technol. 25 (1991) 1522.
[88] Y. Zhu, L. Zhang, C. Gao, L. Cao, J. Mater. Sci. 35 (2000) 4049.
[89] K. E. Karakitsu, X. E. Verykios, J. Phys. Chem. 97 (1993) 1184.
[90] M. I. Litter, Appl. Catal. B: Environ. 23 (1999) 89.
[91] J. M. Herrmann, H. Tahiri, C. Guillar, P. Pichat, Catal. Today 54 (1999) 131.
[92] R. S. Sonawane, B. B. Kale, M. K. Dongare, Mater. Chem. Phys. 85 (2004) 52.
[93] M. J. Alam, D. C. Cameron, J. Sol-Gel Sci. Technol. 25 (2002) 137.
[94] C. H. Lu, W. H. Wu, Mater. Sci. Eng. B 113 (2004) 42.
[95]C. F. Chen, “Preparation and Properties of Ferroelectric Strontium Bismuth Tantalate Ceramics and Dielctric Niobium Oxide Thin Films”, Master Thesis of NTU Chem. Eng. Dept. (2002).
[96] J. Zhu, W. Zheng, B. He, J. Zhang, M. Anpo, J. Mol. Catal. A 216 (2004) 35.
[97] R. A. Spurr, H. Myers, Anal. Chem. 29 (1957) 760.
[98] E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca, M. Gratzel, J. Am. Chem. Soc. 103 (1981) 6324.
[99] J. Moon, H. Takagi, Y. Fujishiro, M. Awano, J. Mater. Sci. 36 (2001) 949.
[100] Power diffraction file, Card No. 89-4921, Joint Committee on power diffraction Standards, Swarthmore, PA.
[101] J. Zhu, W. Zheng, B. He, J. Zhang, M. Anpo, J. Mol. Catal. A 216 (2004) 35.
[102] S. C. Liao, W. E. Mayo, K. D. Pae, Acta Mater. 45 (1997) 4027.
[103] K. W. Seo, J. K. Oh, J. Ceram. Soc. Jpn. 108 (2000) 691.
[104] C. H. Lu, Y. C. Wen, J. Appl. Phys. 86 (1999) 6335.
[105] C. H. Lu, Y. C. Chen, Y. C. Sun, J. Mater. Chem. 12 (2002) 1628.
[106] C. H. Lu, W. J. Hwang, Y. C. Sun, Jpn. J. Appl. Phys. 41 (2002) 6674.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33655-
dc.description.abstract本論文採用溶膠-凝膠法製備BaCo0.5Ta0.5O3粉體。在經過800 oC的鍛燒後,可得到BaCo0.5Ta0.5O3之單相粉體。從紫外光-可見光吸收光譜中可以看出該粉體具有較寬廣的能隙,而從光反應實驗中可知該結構擁有紫外光光觸媒活性。將銀金屬以含浸法負載於此粉體表面後可使其展現出較為優良的光反應性。
另一方面,一種新型的可見光觸媒- BaCo0.5Nb0.5O3粉體以溶膠-凝膠法製備而成。在經過1000oC之熱處理可得該單相粉體。煆燒溫度與此粉體之粒徑大小及結晶性有相當密切的關係。而從紫外光-可見光吸收光譜結果可知該粉體具有比二氧化鈦小之能隙,經由光反應實驗可知該結構具有可見光反應特性,且活性大小會隨著煆燒溫度的不同而有所變化。經過實驗結果可證明經1000oC熱處理後所得粉體具有最佳的反應活性。
而為了使二氧化鈦在可見光下作用,在本論文最後一部份嘗試利用Fe3+離子摻雜於二氧化鈦中,以改變其能階結構。從XRD繞射圖譜中可觀察出摻雜Fe3+離子後會促進rutile相的生成。而從紫外光-可見光吸收光譜中可發現Fe3+離子摻雜後可使二氧化鈦之吸收帶偏移至可見光區域。Fe3+離子之摻雜濃度對光觸媒粉體之活性的影響也從光觸媒活性測試中進行討論。此外,另利用有機金屬沉澱法製備單一銳鈦礦相的光觸媒二氧化鈦薄膜,並將Fe3+離子摻雜其中。結果發現利用新式高壓結晶化製程,可將二氧化鈦的結晶溫度由325oC降至125oC。而薄膜表面形成的粒子會隨著退火溫度上升而變大。由SEM結果顯示出以高壓結晶製備所得薄膜具有較為均勻且緻密的表面形貌,而經由可見光反應測試,高壓結晶製程所製備之薄膜確實具有較佳之光觸媒活性。
zh_TW
dc.description.abstractBaCo0.5Ta0.5O3 powders were prepared via a sol-gel method. The monophasic perovskite phase was formed after calcining at 800oC. From the UV-vis spectra, this compound revealed a wide band gap and exhibited photocatalytic activity under UV light irriadiation. The photo-activity was improved through loading of silver metal on the surface of BaCo0.5Ta0.5O3 particles.
A new type of photocatalyst-BaCo0.5Nb0.5O3 was successfully synthesized by a sol-gel process. After heating at 1000oC, the pure phase of this compound was formed. The particle size and the crystallinity of BaCo0.5Nb0.5O3 powders significantly depended on the calcining temperature. The band gap calculated from the UV-visible spectra was narrower than that of titania. BaCo0.5Nb0.5O3 was demonstrated to have photocatalytic activity under visible light irradiation. The photo-activity of the prepared BaCo0.5Nb0.5O3 powders significantly depended on the synthesis temperature. The 1000oC-calcined powders were found to have the highest photocatalytic activity because of their well-crystallized structure and uniform particle size.
In the final part of this thesis, iron-ion doped titania powders were prepared. The XRD result showed that doping iron-ion can promote the phase transformation from anatase to rutile phase. In the UV-vis spectra, the modified Fe3+-doped TiO2 shifted the absorption edge of TiO2 to the visible light region. The relation between the doping content of iron-ion and photocatalytic activity was discussed. Iron-ion doped titania thin films, responding to visible-light irradiation, were successfully synthesized via the high-pressure crystallization (HPC) process. The monophasic anatase of TiO2 was formed at a temperature as low as 125oC under the high-pressure process. The doping content of iron-ion in TiO2 films significantly influenced the photo-activity. The particle sizes of the films were enlarged with a rise in the annealing temperatures. The Fe3+-doped TiO2 thin films prepared via the HPC had uniform surface structure. In comparison with the films prepared via the conventional annealing process, the HPC-derived films have better photo-activity.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:44:14Z (GMT). No. of bitstreams: 1
ntu-95-R93524065-1.pdf: 3634539 bytes, checksum: f4b25fb2e57bf7de6f35df8b5d7bfc04 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents摘要
Abstract
Contents............................................................................................................Ⅰ
List of Figures…………………………………………………….…………ⅣList of Tables………………………………………………………………..ⅩⅡ
Chapter 1 Introduction and Background
1.1 Preface…………………………………………………………………...1
1.2 Introduction to photocatalytic titanium dioxide………………..2
1.2.1 Crystal structures of titanium dioxide……………………………...2
1.2.2 Principles of photocatalysis................................................................4
1.2.3 Principles of photo-induced superhydrophility……………………6
1.2.4 Application of photocatalytic titanium dioxide................................9
1.2.4.1 Anti-bacterial, anti-viral and fungicidal……………………….10
1.2.4.2 Deodorizing and air purification………………………………11
1.2.4.3 Self-cleaning……………………………………………….......11
1.2.4.4 Anti-cancer…………………………………………………….12
1.2.4.5 Water treatment and water purification………………………..12
1.2.4.6 Other applications……………………………………………..12
1.2.5 Processes of synthesizing titanium dioxide powders…………….13
1.2.5.1 Hydrolysis process……………………………………………..13
1.2.5.2 Microemulsion process………………………………………...13
1.2.5.3 Hydrothermal process…………………………………………14
1.2.6 Processes of synthesizing titanium dioxide thin films…………..15
1.2.6.1 Sol-gel method………………………………………………...15
1.2.6.2 Radio frequency sputtering method…………………………...16
1.3 Research objectives………………………………………………….17
Chapter 2 preparation and characterization of BaCo0.5Ta0.5O3 photocatalyst response to UV light
2.1 Introduction……………………………………………………………33
2.2 Experimental…………………………………………………………..34
2.2.1 Preparation of BaCo0.5Ta0.5O3 powders via the sol-gel proccess.34
2.2.2 Characterization of photocatalytic BaCo0.5Ta0.5O3 powders……35
2.3 Characterization of BaCo0.5Ta0.5O3 photocatalysts…………..36
2.4 Summary……………………………………………………………….40
Chapter 3 Preparation and characterization of BaCo0.5Nb0.5O3 photocatalyst response to visible light
3.1 Introduction……………………………………………………………52
3.2 Experimental…………………………………………………………..53
3.2.1 Synthesis of BaCo0.5Nb0.5O3 via the Solid-state Method……….53
3.2.2 Synthesis of BaCo0.5Nb0.5O3 via a Sol-gel Route………………..53
3.2.3 Analysis Technique………………………………………………...54
3.3 Characterization of BaCo0.5Nb0.5O3 photocatalysts………….55
3.4 Summary……………………………………………………………….61
Chapter 4 Preparation and characterization of Iron-ions doped titania photocatalyst response to visible light
4.1 Introduction……………………………………………………………75
4.2 Experimental…………………………………………………………..77
4.2.1 Preparation of iron-ions doped titanium dioxide powders……...77
4.2.2 Preparation of iron-ions doped titanium dioxide thin films……..77
4.2.3 Analysis Technique……………………………………………….....79
4.3 Characterization of Fe3+-doped TiO2 photocatalyst………….79
4.3.1 Characterization of Fe3+-doped TiO2 powders…………………...79
4.3.2 Characterization of Fe3+-doped TiO2 thin films………………….83
4.4 Summary……………………………………………………………….87
Chapter 5 Conclusions……………………………………………..103
Reference…………………………………………………………………..105
dc.language.isoen
dc.title可見光光觸媒粉體及薄膜之製備與特性分析zh_TW
dc.titlePreparation and Characterization of Visible-Light-Driven Photocatalytic Powders and Thin Filmsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林麗瓊(Li-Chyong Chen),林舜天(Shun-Tian Lin)
dc.subject.keyword可見光,光觸媒,鈣鈦礦相,二氧化鈦,薄膜,高壓水熱,zh_TW
dc.subject.keywordvisible light,photocatalyst,perovskite,titania,thin films,high pressure,en
dc.relation.page110
dc.rights.note有償授權
dc.date.accepted2006-07-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
3.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved