Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33653
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李財坤(Tsai-Kun Li)
dc.contributor.authorShu-Yu Huangen
dc.contributor.author黃書毓zh_TW
dc.date.accessioned2021-06-13T05:44:13Z-
dc.date.available2006-08-03
dc.date.copyright2006-08-03
dc.date.issued2006
dc.date.submitted2006-07-15
dc.identifier.citationAdams, D.E., Shekhtman, E.M., Zechiedrich, E.L., Schmid, M.B. and Cozzarelli, N.R. (1992) The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell, 71, 277-288.
Baaklini, I., Hraiky, C., Rallu, F., Tse-Dinh, Y.C. and Drolet, M. (2004) RNase HI overproduction is required for efficient full-length RNA synthesis in the absence of topoisomerase I in Escherichia coli. Mol Microbiol, 54, 198-211.
Biek, D.P. and Cohen, S.N. (1989) Involvement of integration host factor (IHF) in maintenance of plasmid pSC101 in Escherichia coli: mutations in the topA gene allow pSC101 replication in the absence of IHF. J Bacteriol, 171, 2066-2074.
Bransteitter, R., Pham, P., Scharff, M.D. and Goodman, M.F. (2003) Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci U S A, 100, 4102-4107.
Broccoli, S., Phoenix, P. and Drolet, M. (2000) Isolation of the topB gene encoding DNA topoisomerase III as a multicopy suppressor of topA null mutations in Escherichia coli. Mol Microbiol, 35, 58-68.
Broccoli, S., Rallu, F., Sanscartier, P., Cerritelli, S.M., Crouch, R.J. and Drolet, M. (2004) Effects of RNA polymerase modifications on transcription-induced negative supercoiling and associated R-loop formation. Mol Microbiol, 52, 1769-1779.
Carraway, M. and Marinus, M.G. (1993) Repair of heteroduplex DNA molecules with multibase loops in Escherichia coli. J Bacteriol, 175, 3972-3980.
Chaudhuri, J. and Alt, F.W. (2004) Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol, 4, 541-552.
Chaudhuri, J., Tian, M., Khuong, C., Chua, K., Pinaud, E. and Alt, F.W. (2003) Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature, 422, 726-730.
Chavez, S. and Aguilera, A. (1997) The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes Dev, 11, 3459-3470.
Chavez, S., Beilharz, T., Rondon, A.G., Erdjument-Bromage, H., Tempst, P., Svejstrup, J.Q., Lithgow, T. and Aguilera, A. (2000) A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. Embo J, 19, 5824-5834.
Clewell, D.B. (1972) Nature of Col E 1 plasmid replication in Escherichia coli in the presence of the chloramphenicol. J Bacteriol, 110, 667-676.
Coulondre, C. and Miller, J.H. (1977) Genetic studies of the lac repressor. IV. Mutagenic specificity in the lacI gene of Escherichia coli. J Mol Biol, 117, 577-606.
Di Noia, J. and Neuberger, M.S. (2002) Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature, 419, 43-48.
Dickerson, S.K., Market, E., Besmer, E. and Papavasiliou, F.N. (2003) AID mediates hypermutation by deaminating single stranded DNA. J Exp Med, 197, 1291-1296.
DiNardo, S., Voelkel, K.A., Sternglanz, R., Reynolds, A.E. and Wright, A. (1982) Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell, 31, 43-51.
Drlica, K. (1992) Control of bacterial DNA supercoiling. Mol Microbiol, 6, 425-433.
Drolet, M., Bi, X. and Liu, L.F. (1994) Hypernegative supercoiling of the DNA template during transcription elongation in vitro. J Biol Chem, 269, 2068-2074.
Drolet, M., Phoenix, P., Menzel, R., Masse, E., Liu, L.F. and Crouch, R.J. (1995) Overexpression of RNase H partially complements the growth defect of an Escherichia coli delta topA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. Proc Natl Acad Sci U S A, 92, 3526-3530.
Duquette, M.L., Handa, P., Vincent, J.A., Taylor, A.F. and Maizels, N. (2004) Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev, 18, 1618-1629.
Gillen, J.R., Willis, D.K. and Clark, A.J. (1981) Genetic analysis of the RecE pathway of genetic recombination in Escherichia coli K-12. J Bacteriol, 145, 521-532.
Gowrishankar, J. and Harinarayanan, R. (2004) Why is transcription coupled to translation in bacteria? Mol Microbiol, 54, 598-603.
Hardy, C.D. and Cozzarelli, N.R. (2003) Alteration of Escherichia coli topoisomerase IV to novobiocin resistance. Antimicrob Agents Chemother, 47, 941-947.
Harfe, B.D. and Jinks-Robertson, S. (2000) DNA mismatch repair and genetic instability. Annu Rev Genet, 34, 359-399.
Harinarayanan, R. and Gowrishankar, J. (2003) Host factor titration by chromosomal R-loops as a mechanism for runaway plasmid replication in transcription termination-defective mutants of Escherichia coli. J Mol Biol, 332, 31-46.
Harmon, F.G., DiGate, R.J. and Kowalczykowski, S.C. (1999) RecQ helicase and topoisomerase III comprise a novel DNA strand passage function: a conserved mechanism for control of DNA recombination. Mol Cell, 3, 611-620.
Harmon, F.G. and Kowalczykowski, S.C. (1998) RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev, 12, 1134-1144.
Hecker, M., Riethdorf, S., Bauer, C., Schroeter, A. and Borriss, R. (1988) Expression of a cloned beta-glucanase gene from Bacillus amyloliquefaciens in an Escherichia coli relA strain after plasmid amplification. Mol Gen Genet, 215, 181-183.
Hiasa, H. and Marians, K.J. (1996) Two distinct modes of strand unlinking during theta-type DNA replication. J Biol Chem, 271, 21529-21535.
Hong, X., Cadwell, G.W. and Kogoma, T. (1995) Escherichia coli RecG and RecA proteins in R-loop formation. Embo J, 14, 2385-2392.
Horii, Z. and Clark, A.J. (1973) Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J Mol Biol, 80, 327-344.
Howard-Flanders, P., Simson, E. and Theriot, L. (1964) A Locus That Controls Filament Formation and Sensitivity to Radiation in Escherichia Coli K-12. Genetics, 49, 237-246.
Hraiky, C., Raymond, M.A. and Drolet, M. (2000) RNase H overproduction corrects a defect at the level of transcription elongation during rRNA synthesis in the absence of DNA topoisomerase I in Escherichia coli. J Biol Chem, 275, 11257-11263.
Huertas, P. and Aguilera, A. (2003) Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell, 12, 711-721.
Imai, K., Slupphaug, G., Lee, W.I., Revy, P., Nonoyama, S., Catalan, N., Yel, L., Forveille, M., Kavli, B., Krokan, H.E., Ochs, H.D., Fischer, A. and Durandy, A. (2003) Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol, 4, 1023-1028.
Itoh, T. and Tomizawa, J. (1980) Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc Natl Acad Sci U S A, 77, 2450-2454.
Jimeno, S., Rondon, A.G., Luna, R. and Aguilera, A. (2002) The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. Embo J, 21, 3526-3535.
Kasahara, M., Clikeman, J.A., Bates, D.B. and Kogoma, T. (2000) RecA protein-dependent R-loop formation in vitro. Genes Dev, 14, 360-365.
Kato, T. and Kondo, S. (1970) Genetic and molecular characteristics of X-ray-sensitive mutants of Escherichia coli defective in repair synthesis. J Bacteriol, 104, 871-881.
Kogoma, T. (1997) Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev, 61, 212-238.
Kowalczykowski, S.C., Dixon, D.A., Eggleston, A.K., Lauder, S.D. and Rehrauer, W.M. (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev, 58, 401-465.
Kusano, K., Nakayama, K. and Nakayama, H. (1989) Plasmid-mediated lethality and plasmid multimer formation in an Escherichia coli recBC sbcBC mutant. Involvement of RecF recombination pathway genes. J Mol Biol, 209, 623-634.
Kushner, S.R., Nagaishi, H., Templin, A. and Clark, A.J. (1971) Genetic recombination in Escherichia coli: the role of exonuclease I. Proc Natl Acad Sci U S A, 68, 824-827.
Lanzov, V., Stepanova, I. and Vinogradskaja, G. (1991) Genetic control of recombination exchange frequency in Escherichia coli K-12. Biochimie, 73, 305-312.
Lindahl, T. (1993) Instability and decay of the primary structure of DNA. Nature, 362, 709-715.
Liu, L.F. and Wang, J.C. (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A, 84, 7024-7027.
Lloyd, R.G. and Buckman, C. (1995) Conjugational recombination in Escherichia coli: genetic analysis of recombinant formation in Hfr x F- crosses. Genetics, 139, 1123-1148.
Lopez, C.R., Yang, S., Deibler, R.W., Ray, S.A., Pennington, J.M., Digate, R.J., Hastings, P.J., Rosenberg, S.M. and Zechiedrich, E.L. (2005) A role for topoisomerase III in a recombination pathway alternative to RuvABC. Mol Microbiol, 58, 80-101.
Lovett, S.T. and Clark, A.J. (1984) Genetic analysis of the recJ gene of Escherichia coli K-12. J Bacteriol, 157, 190-196.
Martin, A., Bardwell, P.D., Woo, C.J., Fan, M., Shulman, M.J. and Scharff, M.D. (2002) Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature, 415, 802-806.
Martin, A. and Scharff, M.D. (2002a) AID and mismatch repair in antibody diversification. Nat Rev Immunol, 2, 605-614.
Martin, A. and Scharff, M.D. (2002b) Somatic hypermutation of the AID transgene in B and non-B cells. Proc Natl Acad Sci U S A, 99, 12304-12308.
Masse, E. and Drolet, M. (1999a) Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J Biol Chem, 274, 16659-16664.
Masse, E. and Drolet, M. (1999b) R-loop-dependent hypernegative supercoiling in Escherichia coli topA mutants preferentially occurs at low temperatures and correlates with growth inhibition. J Mol Biol, 294, 321-332.
Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y. and Honjo, T. (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell, 102, 553-563.
Nakayama, H., Nakayama, K., Nakayama, R., Irino, N., Nakayama, Y. and Hanawalt, P.C. (1984) Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: identification of a new mutation (recQ1) that blocks the RecF recombination pathway. Mol Gen Genet, 195, 474-480.
Nakayama, K., Irino, N. and Nakayama, H. (1985) The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants. Mol Gen Genet, 200, 266-271.
Nickoloff, J.A. (1992) Transcription enhances intrachromosomal homologous recombination in mammalian cells. Mol Cell Biol, 12, 5311-5318.
Nurse, P., Levine, C., Hassing, H. and Marians, K.J. (2003) Topoisomerase III can serve as the cellular decatenase in Escherichia coli. J Biol Chem, 278, 8653-8660.
Nygaard, P. (1986) On the role of cytidine deaminase in cellular metabolism. Adv Exp Med Biol, 195 Pt B, 415-420.
Okazaki, I.M., Kinoshita, K., Muramatsu, M., Yoshikawa, K. and Honjo, T. (2002) The AID enzyme induces class switch recombination in fibroblasts. Nature, 416, 340-345.
Orr, E., Fairweather, N.F., Holland, I.B. and Pritchard, R.H. (1979) Isolation and characterisation of a strain carrying a conditional lethal mutation in the cou gene of Escherichia coli K12. Mol Gen Genet, 177, 103-112.
Petersen-Mahrt, S.K., Harris, R.S. and Neuberger, M.S. (2002) AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature, 418, 99-103.
Pham, P., Bransteitter, R. and Goodman, M.F. (2005) Reward versus risk: DNA cytidine deaminases triggering immunity and disease. Biochemistry, 44, 2703-2715.
Pham, P., Bransteitter, R., Petruska, J. and Goodman, M.F. (2003) Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature, 424, 103-107.
Phoenix, P., Raymond, M.A., Masse, E. and Drolet, M. (1997) Roles of DNA topoisomerases in the regulation of R-loop formation in vitro. J Biol Chem, 272, 1473-1479.
Postow, L., Hardy, C.D., Arsuaga, J. and Cozzarelli, N.R. (2004) Topological domain structure of the Escherichia coli chromosome. Genes Dev, 18, 1766-1779.
Prado, F., Piruat, J.I. and Aguilera, A. (1997) Recombination between DNA repeats in yeast hpr1delta cells is linked to transcription elongation. Embo J, 16, 2826-2835.
Pruss, G.J. and Drlica, K. (1986) Topoisomerase I mutants: the gene on pBR322 that encodes resistance to tetracycline affects plasmid DNA supercoiling. Proc Natl Acad Sci U S A, 83, 8952-8956.
Pruss, G.J., Manes, S.H. and Drlica, K. (1982) Escherichia coli DNA topoisomerase I mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell, 31, 35-42.
Rada, C., Ehrenstein, M.R., Neuberger, M.S. and Milstein, C. (1998) Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity, 9, 135-141.
Raji, A., Zabel, D.J., Laufer, C.S. and Depew, R.E. (1985) Genetic analysis of mutations that compensate for loss of Escherichia coli DNA topoisomerase I. J Bacteriol, 162, 1173-1179.
Ramiro, A.R., Jankovic, M., Callen, E., Difilippantonio, S., Chen, H.T., McBride, K.M., Eisenreich, T.R., Chen, J., Dickins, R.A., Lowe, S.W., Nussenzweig, A. and Nussenzweig, M.C. (2006) Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature, 440, 105-109.
Ramiro, A.R. and Nussenzweig, M.C. (2004) Immunology: aid for AID. Nature, 430, 980-981.
Ramiro, A.R., Stavropoulos, P., Jankovic, M. and Nussenzweig, M.C. (2003) Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol, 4, 452-456.
Riethdorf, S., Schroeter, A. and Hecker, M. (1989) RelA mutation and pBR322 plasmid amplification in amino acid-starved cells of Escherichia coli. Genet Res, 54, 167-171.
Rogozin, I.B., Pavlov, Y.I., Bebenek, K., Matsuda, T. and Kunkel, T.A. (2001) Somatic mutation hotspots correlate with DNA polymerase eta error spectrum. Nat Immunol, 2, 530-536.
Stein, R.A., Deng, S. and Higgins, N.P. (2005) Measuring chromosome dynamics on different time scales using resolvases with varying half-lives. Mol Microbiol, 56, 1049-1061.
Thomas, B.J. and Rothstein, R. (1989) Elevated recombination rates in transcriptionally active DNA. Cell, 56, 619-630.
Tian, M. and Alt, F.W. (2000) Transcription-induced cleavage of immunoglobulin switch regions by nucleotide excision repair nucleases in vitro. J Biol Chem, 275, 24163-24172.
Vilette, D., Ehrlich, S.D. and Michel, B. (1995) Transcription-induced deletions in Escherichia coli plasmids. Mol Microbiol, 17, 493-504.
Wang, J.C. (1971) Interaction between DNA and an Escherichia coli protein omega. J Mol Biol, 55, 523-533.
Wang, J.C. (1985) DNA topoisomerases. Annu Rev Biochem, 54, 665-697.
Wang, J.C. (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol, 3, 430-440.
Wiesendanger, M., Kneitz, B., Edelmann, W. and Scharff, M.D. (2000) Somatic hypermutation in MutS homologue (MSH)3-, MSH6-, and MSH3/MSH6-deficient mice reveals a role for the MSH2-MSH6 heterodimer in modulating the base substitution pattern. J Exp Med, 191, 579-584.
Wu, H.Y., Shyy, S.H., Wang, J.C. and Liu, L.F. (1988) Transcription generates positively and negatively supercoiled domains in the template. Cell, 53, 433-440.
Xu, B. and Clayton, D.A. (1995) A persistent RNA-DNA hybrid is formed during transcription at a phylogenetically conserved mitochondrial DNA sequence. Mol Cell Biol, 15, 580-589.
Yoshikawa, K., Okazaki, I.M., Eto, T., Kinoshita, K., Muramatsu, M., Nagaoka, H. and Honjo, T. (2002) AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science, 296, 2033-2036.
Yu, K., Chedin, F., Hsieh, C.L., Wilson, T.E. and Lieber, M.R. (2003) R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol, 4, 442-451.
Yu, K. and Lieber, M.R. (2003) Nucleic acid structures and enzymes in the immunoglobulin class switch recombination mechanism. DNA Repair (Amst), 2, 1163-1174.
Zechiedrich, E.L. and Cozzarelli, N.R. (1995) Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. Genes Dev, 9, 2859-2869.
Zechiedrich, E.L., Khodursky, A.B., Bachellier, S., Schneider, R., Chen, D., Lilley, D.M. and Cozzarelli, N.R. (2000) Roles of topoisomerases in maintaining steady-state DNA supercoiling in Escherichia coli. J Biol Chem, 275, 8103-8113.
Zechiedrich, E.L., Khodursky, A.B. and Cozzarelli, N.R. (1997) Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. Genes Dev, 11, 2580-2592.
Zeng, X., Winter, D.B., Kasmer, C., Kraemer, K.H., Lehmann, A.R. and Gearhart, P.J. (2001) DNA polymerase eta is an A-T mutator in somatic hypermutation of immunoglobulin variable genes. Nat Immunol, 2, 537-541.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33653-
dc.description.abstract當核醣核酸聚合酶 (RNA polymerase) 在去氧核醣核酸 (DNA) 上進行轉錄(transcription) 並延長RNA時,有時會產生和RNA相關的結構,稱為R-loop。R-loop是由RNA和轉錄中的模板DNA (template DNA) 形成配對鍵結,而另一股DNA則是以單股的形式存在。R-loop的生理功能可以作為DNA複製 (replication) 時所必須的引子 (primer),但是R-loop不正常的累積,可能會造成細胞存活率下降。近年來,發現造成抗體多異性 (antibody diversification) 的DNA基因重組 (recombination) 機制中轉錄所產生的R-loop扮演重要角色。免疫B細胞 (B cell) 中的蛋白,誘發活化性胞嘧啶核苷脫氨酶 (activation-induced cytidine deaminase, AID) 則參與在抗體發展更具高度辨識抗原的能力 (higher affinity),和改變抗體的類型 (class switching),藉此以因應不同的生理需求及對抗各類外來之病源。根據之前的文獻指出AID是作用在單股DNA,因此推論在R-loop 結構中的單股DNA可能是AID的作用目標受質。在本篇論文中,我們以細菌為操作模式系統,利用AID 刺激產生的基因突變 (AID-stimulated mutagenesis, ASM)為實驗方法,來探討DNA拓樸異構酶 (topoisomerases) 和參與基因重組的蛋白對R-loop形成的調控機制。本篇論文顯示,R-loop的確在AID發生基因重組過程中佔了很重要的地位。大腸桿菌中第一型DNA拓樸異構酶 (topoisomerase I, TopA),第三型DNA拓樸異構酶 (topoisomerase III, TopB) 及第四型Topo IV拓樸異構酶 (topoisomerase IV, Topo IV) 會減少R-loop的形成而降低ASM; 相反地,第二型DNA拓樸異構酶 (gyrase) 則是增加R-loop和ASM的產生。另一方面,RecF 參與的重組途徑 (RecF pathway) 和錯配修復 (mismatch repair) 也在ASM中扮演重要的角色。本篇論文清楚指出拓樸異構酶利用調節DNA 拓樸 (Topology) 構型之能力來有效維持生物體內R-loop的恒定,並參與調控R-loop相關細胞功能,例如抗體變異性及DNA 複製。zh_TW
dc.description.abstractThe R-loop structure, an RNA/DNA hybrid with a single-stranded DNA region, has been observed during transcription elongation. Recently, the formation of transcription-associated R-loop and the activation-induced cytidine deaminase (AID) have been demonstrated to be tightly associated with the recombination events around antibody maturation. In addition to serve as recombination substrates, R-loop might also present as activation signal for cellular stress response and as primer for the initiation of DNA replication. In this thesis, we took advantage of a bacterial model system to investigate the roles of DNA topoisomerases and recombination enzymes in the regulation of R-loop formation which is indicated by changes in the level of the AID-stimulated mutagenesis (ASM). Our results provided the first evidence that R-loop is indeed the targeting substrates for AID-induced mutagenesis. In addition, R-loop is also responsible for plasmid-mediated lethality and cellular filamentations in recBCsbcBC mutant background. Consistent with the proposed role for TopA in suppression of R-loop formation, our results demonstrated that topA mutation and over-expression of TopA increased and reduced the frequencies of ASM, respectively. Similarly, deficiency of another Type I topoisomerase, TopB, also resulted in higher level of ASM. On the other hand, the presence of DNA gyrase increased ASM, possibly through its R-loop promoting activity. Interestingly, another Type II topoisomerase, Topo IV, plays a suppressing role in the function of R-loop. As for the recombination enzymes, enzymes in the mismatch repair (MMR) and RecF pathways were required for ASM. Furthermore, the RecF pathway, by modulation of R-loop formation, contributes to plasmid-mediated lethality and cellular filamentations in recBCsbcBC mutant background.en
dc.description.provenanceMade available in DSpace on 2021-06-13T05:44:13Z (GMT). No. of bitstreams: 1
ntu-95-R93445111-1.pdf: 5770052 bytes, checksum: 63fe03e229879b7c8f08d5a3053e9f1e (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要
ABSTRACT
INTRODUCTION…………………………………………………………………...1
1. R-loop
1-1. Formation of R-loop
1-2. Biological functions of R-loop
1-3. Regulation of R-loop
2. DNA topoisomerase
2-1. Type I enzymes: topoisomerase I (TopA) and topoisomerase III (TopB) in E. coli
2-2. Type II enzymes: gyrase and topoisomerase IV (Topo IV) in E. coli
3. Activation-induced cytidine deaminase (AID) and transcription for antibody diversification
3-1. Characteristics of AID: mechanisms of action and substrate requirements
3-2. Generation of antibody diversification following AID deamination
3-3. The assay of AID-stimulated mutagenesis (ASM) in E. coli
4. Recombination pathway in E. coli
4.1 RecBCD pathway
4.2 RecE pathway
4.3 RecF pathway
4.4 Mismatch repair (MMR) pathway
SPECIFIC AIMS……………………………………………………………………14
MATERIAL AND METHODS……………………………………………………..15
-Escherichia coli strains
-Plasmids
-Media and growth conditions
-Preparation of competent cells
-Transformation
-AID-stimulated mutagenesis assay
-Plating efficiency
-Fluorescence microscopy
-DNA supercoiling analysis
-Preparation for cell lysates for Western blot analysis
-Western blot analysis
RESULTS…………………………………………………………………….......... 21
-AID stimulates mutagenesis in a bacterial model system
-Formation of R-loop is a prerequisite for AID-stimulated mutagenesis
The roles of Type I topoisomerases in modulation of R-loop formation
-DNA topoisomerase I (TopA) is as a negative regulator for the mutagenesis pathway induced by AID deamination
1. Mutation triggered by AID is enhanced by a deficiency of TopA in topA mutant
2. Over-expression of either TopA or RNaseH can efficiently reduce the folds of
ASM in both wide type and topA mutant strains
3. R-loop associated negative supercoilings exist in topA mutant strain
-DNA topoisomerase III (TopB) has the suppressing effect on AID-stimulated mutagenesis
The roles of Type II topoisomerases in modulating R-loop formation
-Gyrase is as a positive regulator contributing the higher frequency of ASM
1. Deficiency in gyrase activity decreases the frequency of ASM
2. Episomal expression of GyrB in gyrB20 (Ts) strain increases frequency of ASM.
3. Over-expression of either TopA or RNase H can still reduced the folds of ASM in
gyrB mutant strain at semi-permissive temperature
4. Study of ASM in bacteria cells with double mutations in topA and gyrase genes
revealed the differential abilities of TopA and gyrase in regulation of R-loop
formation
-DNA topoisomerase IV participated in AID-stimulated mutagenesis
-The differential roles of recombination pathways in AID-stimulated recombination and other downstream events
1. The phenotype of recBCsbcBC mutant and its association with R-loop formation
2. The phenotypes of RecF pathway activation can suppress by TopA and RNaseH
3. Phenotypes relevant to the RecF pathway become more deleterious in
recBCsbcBC mutant cells transformed the AID plasmid
-Mismatch repair system is involved in the AID-stimulated mutagenesis
DISCUSSIONS……………………………………………………………………..33
-The formation of R-loop versus the global and the local supercoiling
-Through modulation of R-loop formation, DNA topoisomerase might contribute to antibody diversification
-The role of RecF pathway in AID-stimulated mutegenesis
-Other biological functions of R-loop
REFERENCES………………………………………………………………...........39
FIGURES……………………………………………………………………...........47
-Table 1 Biochemical activities and cellular functions of E. coil proteins in this study
-Table 2 List of E. coli strains used in this study
-Figure 1 Formation of R-loop and its biological implications
-Figure 2 Activation-induced deaminase (AID)-stimulated mutagenesis
-Figure 3 R-loop structure presents a targeting substrate for AID and subsequently leading to AID-stimulated mutagenesis
-Figure 4 TopA functions in the suppression of R-loop formation
-Figure 5 Suppression of ASM by over-expression of TopA
-Figure 6 TopA over-expression also suppressed the fold of ASM in topA mutant
-Figure 7 Over-expression of RNase H also suppressed the fold of ASM in topA deletion or mutant cells
-Figure 8 Plasmids extracted from topA deletion or mutant cells exhibit more negative supercoiled
-Figure 9 The involvements of TopB and RecQ in regulation of R-loop formation
-Figure 10 DNA gyrase promotes formation of R-loop
-Figure 11 Over-expression of TopA or RNase H further suppressed the frequency of ASM in gyrase-deficient condition
-Figure 12 Cells with double mutations in topA and gyrase genes revealed the differential abilities of TopA and gyrase in regulation of R-loop formation
-Figure 13 The ASM of parER132C mutant cells (2822) were greater than that of wild type cells (1358)
-Figure 14 AID contributed to plasmid-mediated lethality in various recombination-deficient backgrounds
-Figure 15 Suppression of plasmid-mediated lethality by over-expression of either RNAse H or TopA in JC7623 (recBCsbcBC) cells
-Figure 16 AID and RecF contributed to plasmid -mediated filamentous phenotype in recBCsbcBC backgrounds
-Figure 17 R-loop contributes to the generation of cellular filamentation phenotype in JC7623 (recBCsbcBC) cells
-Figure 18 The recombination pathways utilized by R-loop-associated mutagenesis
-Figure 19 Mismatch repair (MMR) pathway is required for R-loop-associated mutagenesis
-Figure 20 A schematic representation for the regulation of R-loop formation and R-loop-associated cellular responses
dc.language.isoen
dc.subject拓樸異構&#37238zh_TW
dc.subject脫氨&#37238zh_TW
dc.subject誘發活化性胞嘧啶核&#33527zh_TW
dc.subject基因重組zh_TW
dc.subjectrecombinationen
dc.subjectDNA topoisomeraseen
dc.subjectAIDen
dc.subjectRNA/DNA hybriden
dc.subjectR-loopen
dc.subjectMismatch repairen
dc.subjectrecBCsbcBCen
dc.subjectRecFen
dc.title探討細胞因子調控R-loop的形成及其生理意義:
AID造成之基因突變
zh_TW
dc.titleRegulation of R-loop formation and its implications:
AID-stimulated mutagenesis
en
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧述諄,繆希椿
dc.subject.keyword拓樸異構&#37238,基因重組,誘發活化性胞嘧啶核&#33527,脫氨&#37238,zh_TW
dc.subject.keywordRNA/DNA hybrid,R-loop,AID,DNA topoisomerase,recombination,RecF,recBCsbcBC,Mismatch repair,en
dc.relation.page73
dc.rights.note有償授權
dc.date.accepted2006-07-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
5.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved