Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33617
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李達源
dc.contributor.authorYi-Cheng Hsiehen
dc.contributor.author謝易錚zh_TW
dc.date.accessioned2021-06-13T04:50:45Z-
dc.date.available2011-07-29
dc.date.copyright2011-07-29
dc.date.issued2011
dc.date.submitted2011-07-27
dc.identifier.citation戶刈義次。1963。作物學試驗法。東京農業技術學會印行。第159-176頁。
何聖賓。1979。水稻品種對高鐵濃度之抵抗性差異。國立台灣大學農業化學研究所碩士論文。
林聖淇、趙方傑、黃文達、徐新貴、姚佩萱、張尊國。2008。關渡平原水田土壤砷物種與水稻植體濃度關係探討。農業工程學報。
吳懿芳。2009。土壤溶液中砷物種分佈及轉變與其對水稻之毒害。國立台灣大學農業化學研究所碩士論文。
張西科、尹君、劉文菊、張福鎖、毛達如。2002。根系氧化力不同的水稻品種磷鋅營養狀況的研究。植物營養與肥料學報。第54-57頁。
郭國恩、蘇俊茂。1969。排水不良地區二氧化錳與水管理對水稻產量影響之研究。臺灣省政府農林廳58年土壤肥料試驗成果報告。第87-107頁。
劉鎮宗。1995。砷與生態環境的關係。科學月刊。第134-140頁。
Armstrong, W., M.E. Strange, S. Cringle, and P.M. Beckett. 1994. Microelectrode and modeling study of oxygen distribution in roots. Ann. Bot. 74:287-299.
Blute, N.K., D.J. Brabander, H.F. Hemond, S.R. Sutton, M.G. Newville, and M.L. Rivers. 2004. Arsenic sequestration by ferric iron plaque on cattail roots. Environ. Sci. Technol. 38:6074-6077.
Chen, C.C., J.B. Dixon, and F.T. Turner. 1980. Iron coatings on rice roots: morphology and models of development. Soil Sci. Soc. Am. J. 44:1113-1119.
Chen, S.B., Y.G. Zhu, and Y.B. Ma. 2006. Effects of phosphate amendments on Pb extractability and movement of phosphorus in contaminated soil (in Chinese). Acta Scientiae Circumstantiae 26:1140–1144.
Chen, S.L., S.R. Dzeng, M.H. Yang, K.H. Chiu, G.M. Shieh, and C.M. Wai. 1994. Arsenic species in groundwater of the Blackfoot disease in Taiwan. Environ. Sci. Technol. 28:877-881.
Chen, Z., Y.G. Zhu, W.J. Liu, and A.A. Meharg. 2005. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol. 165:91-97.
Crowder, A., and S.M. Macfis. 1986. Seasonal deposition of ferric hydroxide plaque on roots of wetland plant. Can. J. Bot. 64:2120-2124.
Deng, D., S.C. Wu, F.Y. Wu, H. Deng, and M.H. Wong. 2010. Effects of root anatomy and Fe plaque on arsenic uptake by rice seedlings grown in solution culture. Environ. Pollut. 158:2589-2595.
Geng, C.N., Y.G. Zhu, W.J. Liu, and S.E. Smith. 2005. Arsenate uptake and translocation in seedlings of two genotypes of rice is affected by external phosphate concentrations. Aquat. Bot. 83:321-331.
Green, M.S., and J.R. Etherington. 1977. Oxidation of ferrous iron by rice (Oryza sativa L.) roots: a mechanism for waterlogging tolerance. J. Exp. Bot. 28:678-690.
Greipsson, S. 1994. Effects of iron plaque on roots of rice on growth and metal concentration of seeds and plant tissues when cultivated in excess copper. Commun. Soil Sci. Plant Anal. 25:2761-2769.
Guo, H.R. 2002. Cancer risk assessment for arsenic exposure through oyster consumption. Environ. Health Persp. 110:123-124.
Hansel, C.M., S. Fendorf, S. Sutton, and M. Newville. 2001. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ. Sci. Technol. 35:3863–3868.
Hossain, M.B., M. Jahiruddin, R.H. Leoppert, G.M. Panaullah, M.R. Islam, and J.M. Duxbury. 2009. The effects of iron plaque and phosphorus on yield and arsenic accumulation in rice. Plant Soil 317:167-176.
Hsu, K.H., L.L. Hsieh, H.Y. Chiou, C.J. Lee, C.Y. Wang, T.H. Lee, and C.J. Chen. 1999. Comparison of characteristics and arsenic toxicity between residents of southwestern region and northeastern basin in Taiwan: A study on prevalence of hypertension. Chin J. Public. Health. 18:124-133.
Jain, C.K., and I. Ali. 2000. Arsenic: occurrence, toxicity and speciation techniques. Water Res. 34:4304-4312.
Jiang, F.Y., X. Chen, and A.C. Luo. 2009. Iron plaque formation on wetland plants and its influence on phosphorus, calcium and metal uptake. Aquat. Ecol. 43:879-890.
Joshi, M.M., I.K. Ibrahim, and J.P. Hollis. 1975. Hydrogen sulfide: Effects on the physiology rice plants and relation to straighthead disease. Phytopathology 65:1165-1170.
Le, X.C., W.R. Cullen, and K.J. Reimer. 1994. Effect of cysteine on the speciation of arsenic by using hydride generation atomic absorption spectrometry. Anal. Chim. Acta 285:277-285.
Le, X.C., M. Ma, and V.W.M. Lai. 1999. Exposure to arsenosugars from seafood ingestion and speciation of urinary arsenic metabolites. Arsenic exposure and health effects 69-79.
Li, D.M., J.J. Tang, and Y.S. Li. 1991. Ecologi-Cal and physiologicalmechanism of rice tolerance to gleyicpaddy soil and prospects of breeding rice varieties for problem soils. Rice Rev. Abstr. 10:1-4
Liu, W.J., Y.G. Zhu, F.A. Smith, and S.E. Smith. 2004. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J. Exp. Bot. 55:1707-1713.
Liu, W.J., Y.G. Zhu, Y. Hu, P.N. Williams, A.G. Gault, A.A. Meharg, J.M. Charnock, and F.A. Smith. 2006. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza Sativa L.). Environ. Sci. Technol. 40:5730-5736.
Lombi, E., R.E. Hamon, G. Wieshammer, M.J.M. Laughlin, and S.P.M. Grath. 2004. Assessment of the use of industrial by-products to remediate a copper- and arsenic-contaminated soil. J. Environ. Qual. 33:902-910.
Nanzyo, M., H. Yaginuma, H. Kanno, and T. Takahashi. 2010. Formation of iron plaque and vivianite on the roots of paddy rice. 19th World Congress of Soil Science. pp.82-85.
Otte, M.L., J. Rozema, L. Koster, M.S. Haarsma, and R.A. Broekman. 1989. Iron plaque on roots of Aster tripolium L.: interaction containing zinc uptake. New Phytol. 111:309-317
Ottow, J.C.G., G. Benckiser, and I. Watanabe. 1982. Iron toxicity of rice as multiple nutritional soil stress. Trop. Agric. Res. Series 15:167-179
Sahrawat, K.L. 2004. Iron toxicity in wetland rice and the role of other nutrients. J. Plant Nutri. 27:1471-1504
St-Cyr, L., and A.A. Crowder. 1989. Factors affecting iron plaque on the roots of Phragmites australis (Cav.) Trin ex Steudel. Plant Soil 116:85–93
Sunilda, T.F. 2009. Effects of Rhizobacteria on iron uptake and root iron plaque formation in lowland rice under conditions of iron toxicity. Master of science of Rheinisch Friedrich-Wilhelms-Universitat zu Bonn.
Tanaka, A., R. Loe, and S.A. Navasero. 1966. Some mechanisms involved in the development of iron toxicity symptoms in the rice plant. Soil Sci. Plant Nutri. 12:32-38.
Tayor, G.T., and A.A. Crowder. 1983. Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plant. Am. J. Bot. 70:1254-1257.
Tseng, C.H., T.Y. Tai, C.K. Chong, C.P. Tseng, M.S. Lai, B.J. Lin, H.Y. Chiou, Y.M. Hsueh, K.H. Hsu, and C.J. Chen. 2000. Long-term arsenic exposure and incidence of non-dependent diabetes mellitus: a cohort study in arseniasis-hyperendemic villages in Taiwan. Environ. Health Persp. 108:847-851.
Ultra, V.U.J., A. Nakayama, S. Tanaka, Y. Kang, K. Sakurai, and K. Iwasaki. 2009. Potential for the alleviation of arsenic toxicity in paddy rice using amorphous iron-(hydr)oxide amendments. Soil Sci. Plant Nutri. 55:160-169.
Veen, B.W. 1981. Relation between root respiration and root activity. Plant Soil 53:73-76.
Wang, T.G., and J.H. Peverly. 1999. Iron oxidation states on root surfaces of a wetland plant (Phragmites australis). Soil Sci. Soc. Am. J. 63:247-252.
Warren, G.P., and B.J. Alloway. 2003. Reduction of arsenic uptake by lettuce containing ferrous sulfate applied to contaminated soil. J. Environ. Qual. 32:767-772.
Williams, P.N., A. Villada, C. Deacon, A. Raab, J. Figuerola, A.J. Green, J. Feldmann, and A.A. Meharg. 2007. Greatly enhanced As shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ. Sci. Technol. 41:6854-6859.
Xie, Z.M., and C.Y. Huang. 1998. Control of arsenic toxicity in rice plants grown on an arsenic-polluted paddy soil. Commun. Soil Sci. Plant Anal. 29:2471-2477.
Yasuo, O. 1970. Diagnostic methods for the measurement of root activity in rice plant. Jpn. Agr. Res. Quart. 5:1-6.
Ye, Z.H., A.J.M. Baker, M.H. Wong, and A.J. Willis. 1998. Zinc, lead and cadmium accumulation an tolerance in Typha latifolia as affected by iron plaque on the root surface. Aquat. Bot. 61:55-67.
Zhong, S., J. Shi, and J. Xu. 2010. Influence of iron plaque on accumulation of lead by yellow flag (Iris pseudacorus L.) grown in artificial Pb-contaminated soil. J. Soils Sediments. 10:964-970.
Zhang, X.K., F.S. Zhang, and D.R. Mao. 1998. Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): zinc uptake by Fe-deficient rice. Plant Soil 202:33–39.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33617-
dc.description.abstract本研究以水耕法探討不同水稻品種間鐵膜形成之差異;並自秈稻、稉稻中分別篩選出鐵膜多與寡的兩個品種於含砷養液栽培,以了解溶液中砷與鐵對水稻根表面鐵膜形成之交互作用,進一步探討不同鐵膜生成量對水稻吸收砷之影響。結果顯示,養液於100 mg Fe(II) L-1濃度下,水稻根表面會生成紅棕色之鐵膜,且生成量隨品種不同而有所差異。其中台稉9號(稉稻)與台秈2號(秈稻)為鐵膜量較高之品種;桃園3號(稉稻)與中秈育962021號(秈稻)為鐵膜量較低之品種,並以此探討不同鐵膜量之水稻品種於不同砷濃度下生長之差異。結果發現,水稻根表面鐵膜量隨環境中砷濃度增加而增加,且隨著鐵膜量增加,鐵膜所吸持之磷與砷量也隨之增加。然而鐵膜之吸持能力因品種不同而有差異,推測可能為不同品種水稻根表面鐵膜生成之鐵(氫)氧化物不同所致,其中以台稉9號鐵膜之砷吸持能力最佳。植體分析結果顯示水稻根表面鐵膜之生成會阻礙水稻對磷之吸收,同時也阻擋對砷之吸收,又以台稉9號鐵膜阻擋之砷含量最多,可高達植體總吸持(收)砷含量的52-65%。整體而言,由於鐵膜可有效阻擋砷,因此於根表面形成鐵膜之水稻,砷較不易進入植體內,有助於降低人類因食用稻米而攝入砷之風險。zh_TW
dc.description.abstractThe formation of iron plaque in the different genotypes of rice seedlings grown in nutrient solutions was investigated. Two genotypes of rice seedlings with the highest and lowest capability of forming iron plaque were selected from tested Indica and Japonica rice respectively to further evaluate the effect of iron plaque on the arsenic uptake by rice seedlings. The results showed that red brown iron plaque coating on root surface of rice grown in nutrient solutions containing 100 mg Fe(II) L-1 was observed and the amounts of iron plaque formation significantly varied among the genotypes. TK 9 (Japonica) and TS 2 (Indica) had the highest amounts of iron plaques and TY 3 (Japonica) and TCSY 962021 (Indica) had the lowest amounts of iron plaques among all the tested genotypes. The results of effect of iron plaque on the arsenic uptake by rice seedling showed that increasing arsenic concentration in nutrient solutions increased the amounts of iron plaques and thus increased amounts of phosphorus and arsenic accumulated in iron plaques. The iron plaque of TK 9 had the highest sorption capability for arsenic among the four tested genotypes. The amounts of arsenic sorbed on iron plaques of TK9 were 52-65% of total arsenic uptake/sorption by the rice seedlings. The results suggest that iron plaque formation on the root surface is important on preventing arsenic uptake by rice and hence decreasing the risk of human beings exposing to arsenic through rice diet.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:50:45Z (GMT). No. of bitstreams: 1
ntu-100-R98623014-1.pdf: 4845899 bytes, checksum: b85d6f9c3e7ab414ba5a1a364850fa3a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 IV
表次 VI
圖次 VII
第一章 緒論 1
1.1 砷 1
1.2 砷的污染 3
1.3 砷對人體之危害 4
1.4 砷與水稻 5
1.5 鐵膜與砷 6
1.6 研究目的 7
第二章 材料與方法 8
2.1 水稻幼苗生長試驗 8
2.1.1 育苗方法 8
2.1.2 試驗方法 10
試驗一、不同Fe(II)濃度水耕液對水稻根表面鐵膜形成之影響 10
試驗二、不同水稻品種鐵膜生成量之差異 10
試驗三、不同鐵膜生成量之品種於含砷養液下生長差異 11
2.2 植體採收 12
2.2.1 觀察水稻根表面鐵膜之分布 13
2.2.2 根系氧化力測定 (Yasuo, 1970) 13
2.2.3 植體生質量 14
2.2.4 以DCB溶液萃取水稻根表面鐵膜 (Liu et al., 2004) 14
2.2.5 植體鐵、磷及砷量分析 15
2.3 統計分析 16
第三章 結果與討論 17
3.1 以不同Fe(II)濃度水耕液栽種水稻幼苗所觀察到鐵膜形成位置 17
3.2 不同水稻品種鐵膜生成量之差異 20
3.2.1 水耕營養液中鐵濃度對水稻幼苗生長之影響 20
3.2.2 於含100 mg Fe(II) L-1水耕液下生長之各品種水稻根表面鐵膜與其吸持磷濃度之影響 27
3.2.3 不同品種水稻根系氧化力與鐵膜生成量之關係 28
3.2.4 挑選適合生長於含砷養液之水稻品種 31
3.3 不同鐵膜生成量之水稻品種於含砷養液下生長之差異 33
3.3.1 水稻幼苗生長狀況 33
3.3.2 以DCB溶液萃取之水稻根部鐵膜萃取液 40
3.3.2.1 溶液中砷濃度對水稻根表面鐵膜形成之影響 45
3.3.2.2 根部表面鐵膜的鐵、砷、磷相關性 47
3.3.3 水稻植體鐵、磷、砷含量分析 53
第四章 結論 70
第五章 參考文獻 72
dc.language.isozh-TW
dc.subject稉zh_TW
dc.subject砷zh_TW
dc.subject鐵膜zh_TW
dc.subject品種zh_TW
dc.subject秈稻zh_TW
dc.subject稻zh_TW
dc.subjectiron plaque.en
dc.subjectgenotypeen
dc.subjectIndica riceen
dc.subjectJaponica riceen
dc.subjectarsenicen
dc.title不同水稻品種根部鐵膜生成之差異及其對水稻吸收砷之影響zh_TW
dc.titleFormation of root surface iron plaque in different genotypes of paddy rice and its effect on arsenic uptakeen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳仁炫,鍾仁賜,何聖賓,王尚禮
dc.subject.keyword砷,稉,稻,秈稻,品種,鐵膜,zh_TW
dc.subject.keywordarsenic,Japonica rice,Indica rice,genotype,iron plaque.,en
dc.relation.page79
dc.rights.note有償授權
dc.date.accepted2011-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
4.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved