Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33614
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor曾郁仁(Larry Tzeng)
dc.contributor.author"Keng-Peng, Lin"en
dc.contributor.author林耕芃zh_TW
dc.date.accessioned2021-06-13T04:50:34Z-
dc.date.available2006-07-19
dc.date.copyright2006-07-19
dc.date.issued2006
dc.date.submitted2006-07-15
dc.identifier.citation1. Artzner, P., Delbaen, F., Eber, J.-M. , and Heath, D., 1997, ”Thinking Coherently.” Risk 10(11),68-71
2. Artzner, P., Delbaen, F., , Eber, J.-M. , and Heath, D., 1999, ”Coherent Measures of Risk.” Mathematical Finance 9,203-228
3. Dennenberg, D. 1990, “Premium Calculation: Why Standard Deviation Should Be Replaced by Absolute Deviation.” ASTIN Bulletin 20.181-190
4. Dennenberg, D. 1994, “Non-additive Measure and Integral.” Dordrecht, the Netherlands: Kluwer Academic Publishers
5. Duffie, D. and Pan, J. spring 1997, “An Overview of Value at Risk.” The Journal of Derivatives 4(3), 7-49
6. Schmeidler, D. 1989, “Subjective Probability and Expected Utility without Additivity.” Econometrica 57, 571-587
7. Wang, S.S. 1996, “Premium Calculation by Transforming the Layer Premium Density.” ASTIN Bulletin 26(1),71-92
8. Wang, S.S. and Yang, V. R. 1998, “Ordering risks:Expected utility theory versus Yarri’s dual theory of risk.”, Insurance: Mathematics and Economics 22.,145-161
9. Wirch, J.L. and Hardy, M.R. 1999, “A synthesis of risk measures for capital adequacy.”, Insurance: Mathematics and Economics, 25:337-347
10. Wirch, J.L. 1999, “Raising Value at Risk.”, North American Actuarial Journal, 3(1):106-115
11. Yarri, M.E. 1987, “The Dual Theory of Choice Under Risk.”, Econometrica 55:95-115
12. 關淑蕙(2004),「條件風險值—於保險與股票投資上之應用」,國立台灣大學財務金融學研究所碩士論文
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33614-
dc.description.abstract風險衡量〈risk measure〉的意義乃將風險〈Loss〉可能之機率分配量化成一數值做為指標,試圖透過這個簡單的數據以得知可能蒙受損失的大小,其主要目的為量化及比較風險。為了讓衡量風險的方式更客觀一致,學者發展出尾部條件期望值和以變形函數〈distortion function〉定義的數種同調風險衡量。
本研究首先介紹數種同調風險衡量之變形函數,討論各變形函數之參數與風險測量值大小之關係,並針對不同變形函數做比較與分析,發現使用危險比例變形函數 來衡量右偏資料的風險所得到的風險測量值會比使用雙重次方變形函數 衡量所得到的風險測量指標大。
本研究同時以台灣股票市場八大類股指數報酬率作為實證分析的對象,分別針對長、短期報酬率資料以歷史模擬法計算出各種風險衡量指標,並且說明這幾種風險衡量方式所具有的特性。實證發現:
1. 使用長期資料分析時,若要使用涉險值,應該同時參考針對損失之刪減資料分配的涉險值,方能做出較正確的風險斷定。若是想要風險衡量比較能反應分配的右偏情形,我們可以使用危險比例變形函數gph來衡量,
2. 對於需要爭取時間效率的短期資料,選用不同風險衡量的方式得到之結果並沒有太大不同,因此我們建議使用簡單的涉險值 或條件尾端期望值VaR作為風險衡量即可,如此可以爭取時效,但為了同調性質,條件尾端期望值CTE仍是較好的風險衡量。
zh_TW
dc.description.abstractThere are many reasons to develop risk measurement system. Two general uses of such a system are to quantify and to compare risk. Keeping this in mind, we must ensure any risk measurement system produces coherent result. The coherency of a risk measure has been discussed in Artzner et al. (1997、1999). He also proposed Conditional Tail Expectation as a coherent risk measure. Furthermore, coherent risk measure derived from distortion functions has later been discussed in Wang〈1996〉.
In the first section of this study, we consider some distortion functions and discuss relationship between each risk measure and the parameter. We have also compared different distortion functions. We present that we can obtain larger risk measure of the loss data which is right skewed by using Proportional Hazards Distortion rather than using Dual Power Distortion.
In this paper we also conduct empirical study on the returns of eight industry indexes both in the long run and in the short run. We state the characteristics of each risk measure by using historical simulation approach. And we obtain that :
1. As to the long-term research, when VaR is adopted as a risk measure, the VaR which is calculated from the loss data censored at zero is suggested to be referable. If we want to reflect the skew of the loss distribution, Proportional Hazards distortion would be a good choice.
2. In the short-run analysis, there’s no significant difference between different risk measures. The coherent risk measure CTE is easily understood. In order to save our time, it may be the best choice.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:50:34Z (GMT). No. of bitstreams: 1
ntu-95-R92723026-1.pdf: 548643 bytes, checksum: 1338a6a9257326a200515f2acc8c20f3 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents第一章 緒論 1

第二章 風險衡量發展之回顧
第一節 風險衡量之定義 2
第二節 同調性質 2
第三節 涉險值與條件尾端期望值 4

第三章 變型函數
第一節 變形函數之定義 7
第二節 各種變形函數之介紹 9
第三節 不同變形間之比較與分析 15

第四章 研究方法與研究對象 22

第五章 分析結果 24
第一節 長期資料 25
第二節 短期資料 32

第六章 結論與建議
第一節 結論 35
第二節 研究限制與後續研究建議 36
參考文獻 37

附錄一 39

附錄二 47
dc.language.isozh-TW
dc.title使用變形函數之同調風險衡量討論暨實證分析zh_TW
dc.titleDiscussion and Empirical Analysis of Coherent Risk Measureen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王仁宏,黃瑞卿
dc.subject.keyword風險衡量,變形函數,風險值,條件尾端期望值,zh_TW
dc.subject.keywordCoherent Risk Measure,Distortion Function,VaR,Conditional Tail Expection,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2006-07-17
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
Appears in Collections:財務金融學系

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
535.78 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved