Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33585
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭斯彥(Sy-Yen Kuo)
dc.contributor.authorChen-Shie Hoen
dc.contributor.author何丞世zh_TW
dc.date.accessioned2021-06-13T04:48:48Z-
dc.date.available2007-07-21
dc.date.copyright2006-07-21
dc.date.issued2006
dc.date.submitted2006-07-16
dc.identifier.citation[1] B. Mukherjee, Optical Communication Networks. New York: Mc-Graw-Hill, 1997.
[2] P. Cochrane, “Foreword,” in Optical Network Technology. London: Chapman & Hall, 1995.
[3] WDM Forum London, June 1998.
[4] S. Melle, C. P. Pfistner, and F. Diner, “Amplifier and multiplexing technologies expand network capacity,” Lightwave Magazine, Dec. 1995, pp. 42–46.
[5] P. E. Green, “Optical networking update,” IEEE J. Select. Areas Commun., vol. 14, June 1996, pp. 764–779.
[6] C. Fan, “Keynote address—Optical networking: A paradigm shift,” in WDM Forum, London, June 1998.
[7] B. Mukherjee, “WDM-based local lightwave networks—Part I: Single-hop systems,” IEEE Network Magazine, vol. 6, May 1992, pp. 12–27.
[8] B. Mukherjee, “WDM-based local lightwave networks—Part II: Multihop systems,” IEEE Network Mag., vol. 6, July 1992, pp. 20–32.
[9] R. Ramaswami and K. N. Sivarajan, “Optical routing and wavelength assignment in all-optical networks,” IEEE/ACM Trans. Networking, vol. 3, Oct. 1995, pp. 489–500.
[10] S. Ramamurthy and B. Mukherjee, “Fixed alternate routing and wavelength conversion in wavelength-routed optical networks,” in Proc. IEEE Globecom’98, Sydney, Australia, Nov. 1998.
[11] H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Optical Networks Magazine, vol. 1, no. 1, Jan. 2000.
[12] H. Zang, L. Sahasrabuddhe, J. P. Jue, S. Ramamurthy, and B. Mukherjee, “Connection management for wavelength-routed WDM networks,” in Proc. IEEE GLOBECOM’99, Rio de Janeiro, Brazil, Dec. 1999, pp. 1428–1432.
[13] R. Ramaswami and A. Segall, “Distributeed network control for optical networks,” IEEE/ACM Trans. on Networking, vol. 5, Dec. 1997, pp. 936–943.
[14] J. J. Garcia-Luna-Aceves, “Distributed routing with labeled distances,” in Proc. IEEE Infocom’92, Florence, Italy, May 1992.
[15] S. Ramamurthy and B. Mukherjee, “Survivable WDM mesh networks, Part I—Protection,” in Proc. IEEE Infocom’99, New York, Mar. 1999, pp. 744–751.
[16] S. Ramamurthy and B. Mukherjee,, “Survivable WDM mesh networks, Part II—Restoration,” in Proc. IEEE Int. Conf. Commu. (ICC’99), Vancouver, Canada, June 1999.
[17] S. Ramamurthy, “Optical design of WDM network architectures,” Ph.D. dissertation, Univ. Calif., Davis, Dep. Computer Sci., Sept. 1998.
[18] L. H. Sahasrabuddhe, “Multicasting and fault tolerance in WDM optical networks,” Ph.D. dissertation, Dep. Computer Sci., Univ. Calif., Davis, Nov. 1999.
[19] T. Wu, Fiber Network Service Survivability. Norwood, MA: Artech House, 1992.
[20] W. D. Grover, “The selfhealing network: A fast distributed restoration technique for networks using digital cross-connect machines,” in Proc. IEEE Globecom’87, Tokyo, Japan, Nov. 1987, pp. 28.2.1–28.2.6.
[21] L. H. Sahasrabuddhe and B. Mukherjee, “Light-trees: Optical multicasting for improved performance in wavelength-routed networks,” IEEE Commu. Mag., vol. 37, Feb. 1999, pp. 67–73.
[22] R. A. Barry and P. A. Humblet, “Models of blocking probability in all optical networks with and without wavelength changers,” IEEE J. Select. Areas Commu., vol. 14, June 1996, pp. 858–867.
[23] A. Birman, “Computing approximate blocking probabilities for a class of all-optical networks,” IEEE J. Select. Areas Commu., vol. 14, June 1996, pp. 852–857.
[24] B. Ramamurthy, D. Datta, H. Feng, J. P. Heritage, and B. Mukherjee, “Impact of transmission impairments on the teletraffic performance of wavelength-routed optical networks,” IEEE/OSA J. Lightwave Technology, vol. 17, Oct. 1999, pp. 1713–1723.
[25] O. Gerstel, P. Lin, and G. Sasaki, “Wavelength assignment in a WDM ring to minimize cost of embedded SONET rings,” in Proc. IEEE INFOCOM’98, San Francisco, CA, Mar. 1998, pp. 94–101.
[26] O. Gerstel, R. Ramaswami, and G. Sasaki, “Cost effective traffic grooming in WDM rings,” Proc. IEEE INFOCOM’98, Mar. 1998, pp. 69–77.
[27] A. L. Chiu and E. H. Modiano, “Reducing electronic multiplexing costs in unidirectional SONET/WDM ring networks via efficient traffic grooming,” in Proc. IEEE Globecom’98, Sydney, Australia, Nov. 1998, pp. 322–327.
[28] J. M. Simmons, E. L. Goldstein, and A. A. M. Saleh, “On the value of wavelength-add/drop in WDM rings with uniform traffic,” in Proc. OFC’98, San Jose, CA, Mar. 1998, (expanded version in J. Lightwave Technol., Jan. 1999), pp. 361–362.
[29] X. Zhang and C. Qiao, “An effective and comprehensive approach for traffic grooming and wavelength assignment in SONET/WDM rings,” in Proc. SPIE, vol. 3531, 1998, pp. 221–232.
[30] W. Cho, J. Wang, B. Mukherjee, B. Moslehi, and R. J. Black, “Unification and extension of the traffic-grooming problem in WDM ring networks,” in Proc. OFC’00 Conf., Baltimore, MD, Mar. 2000.
[31] J. Wang, W. Cho, V. R. Vermuri, and B. Mukherjee, “Improved approaches for cost-effective traffic grooming in WDM ring networks: Nonuniform-traffic case,” in Proc. IEEE ICC’00 Conf., New Orleans, LA, June 2000.
[32] B. Ramamurthy, S. Yaragorla, X. Yang, 'Translucent Optical WDM Networks for the Next-Generation Backbone Networks,' in Proceedings of IEEE Globecom 2001, San Antonio, TX, Nov. 2001.
[33] X. Yang and B. Ramamurthy, “Dynamic routing in translucent WDM optical networks,” in Proceedings of IEEE ICC’02, New York, NY, 2002.
[34] M. To and P. Neusy, “Unavailability analysis of long-haul networks”, IEEE Journal of Selected Area of Commu., vol. 12, Jan. 1994, pp. 100-109.
[35] G. Ellinas, A. Hailemariam, and T. E. Stern, “Protection Cycles in Mesh WDM Networks,” IEEE Journal of Selected Area of Commu., vol. 18, Oct. 2001, pp. 1924–1937.
[36] S. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee, “Survivable WDM Mesh Networks,” IEEE/OSA J. Lightwave Technology, vol. 21, Apr. 2003, pp. 870–883.
[37] G. Mohan, C. S. R. Murthy, and A. K. Somani, “Efficient Algorithms for Routing Dependable Connections in WDM Optical Networks,” IEEE/ACM Trans. on Net., vol. 9, Oct. 2001, pp. 553–566.
[38] J. Zhang et al., “On the study of routing and wavelength-assignment approaches for survivable wavelength-routed WDM mesh networks,” SPIE Opti. Nets. Mag., Nov./Dec., 2003.
[39] G. Mohan, Arun K. Somani, “Routing dependable connections with specified failure restoration guarantees in WDM networks”, in Proceedings of IEEE Infocom’00, 2000, pp. 1761 –1770.
[40] S. Yuan and J. P. Jue, “Dynamic path protection in WDM mesh networks under wavelength-continuity and risk-disjoint constraints,” Technical Report, no. UTDCS-26-04, University of Texas at Dallas.
[41] G. Ellinas and T. E. Stern, “Automatic protection switching for link failures in optical networks with bidirectional links,” IEEE Globecom’96, 1996, pp. 152-156.
[42] L. M. Gargner et al, “Techniques for finding ring covers in survivable networks,” IEEE Globecom’94, 1994, pp. 1862-1866.
[43] S. G. Finn, M. M. Medard and R. A. Barry, “A new algorithm for bi-directional self-healing for arbitrary redundant networks,” in Proceedings of IEEE OFC’98, 1998.
[44] M. Medard, S. G. Finn and R. A. Barry, “WDM loop back recovery in mesh networks,” IEEE Infocom’99, 1999, pp. 744-751.
[45] H. Huang and Copeland. “Hamiltonian cycle protection: A novel approach to mesh WDM optical network protection,” in Proceedings of the IEEE Workshop on High Performance Switching and Routing HPSR, Dallas, TX, USA, May 2001.
[46] H. Huang and J. A. Copeland, “A series of Hamiltonian cycle-based solutions to provide simple and scalable mesh optical network resilience,” IEEE Communications Magazine, vol. 40, no. 11, November 2002, pp. 46-51.
[47] C. Ou, H. Zang, and B. Mukherjee, “Sub-path protection for scalability and fast recovery in optical WDM mesh networks,” Proc. OFC, Mar. 2002, pp. 495–496.
[48] V. Anand, S. Chauhan, and C. Qiao, “Sub-path protection: A new framework for optical layer survivability and its quantitative evaluation,” Dept. of Comp. Sci. and Eng., SUNY Buffalo, Tech. Rep. 2002-01, Jan. 2002.
[49] J. Wang, L. Sahasrabuddhe, and B. Mukherjee, “Path vs. subpath vs. link restoration for fault management in IP-over-WDM networks: Performance comparisons using GMPLS control signaling,” IEEE Commu. Mag., vol. 40, Nov. 2002, pp. 2–9.
[50] C. Qiao, Y. Xiong, and D. Xu, “Novel models for efficient shared-path protection,” in Proceedings of IEEE OFC’02, Mar. 2002, pp. 546–547.
[51] P. H. Ho and T. M. Hussein, “A framework for service-guaranteed shared protection in WDM mesh networks,” IEEE Communication Magazine, Feb. 2002, vol. 40, no. 2, pp. 97-103.
[52] P. H. Ho and T. M. Hussein, “Reconfiguration of spare capacity for MPLS-based recovery for the Internet backbone networks,” IEEE/ACM Transactions on Networking, vol. 12, no. 1, February, 2004.
[53] W. D. Grover and D. Stamatelakis, “Cycle-oriented distributed pre-configuration: Ring-like speed with mesh-like capacity for self-planning network restoration,” in Proceedings of IEEE ICC’98 1998, pp. 537-543.
[54] G. Shen and W. D. Grover, “Segment-based approaches to survivable translucent network design under various ultra-long-haul system reach capabilities,” OSA Journal of Optical Networking, vol. 3, no.1, Jan. 2004, pp.1-24.
[55] G. Shen and W. D. Grover, 'Extending the p-Cycle concept to path segment protection for span and node failure recovery,' IEEE JSAC Optical Communications and Networking Series, vol. 21, no.8, Oct. 2003, pp.1306-1319.
[56] D.A. Schupke, M.C. Scheffel, W.D. Grover, “Configuration of p-Cycles in WDM networks with partial wavelength conversion,” Photonic Network Communications, Kluwer Academic Publishers, vol 6, Issue 3, pp. 239-252.
[57] W.D. Grover, J. Doucette, M. Clouqueur, D. Leung, D. Stamatelakis, 'New options and insights for survivable transport networks,' IEEE Communications Magazine, vol.40, no.1, Jan. 2002, pp. 34-41.
[58] W. D. Grover, J. Doucette, 'Design of a meta-mesh of chain sub-networks: Enhancing the attractiveness of mesh-restorable WDM networking on low connectivity graphs,' IEEE JSAC Special Issue on WDM-based Network Architectures, vol.20, no.1., January 2002, pp. 47-61.
[59] M. Clouqueur and W. D. Grover, “Availability analysis of span-restorable mesh networks,” IEEE Journal of Selected Area of Commu., vol. 20, May 2002, pp. 810–21.
[60] R. Iraschko, M. MacGregor, and W. Grover, “Optimal capacity placement for path restoration in STM or ATM mesh-survivable networks,” IEEE/ACM Transaction on Networking, vol. 6, June 1998, pp. 325-336.
[61].W. D. Grover, “Distributed restoration of the transport network,” Telecommunications Network Management into the 21st Century, Piscataway, NJ: IEEE Press, pp. 337-417, 1994.
[62] Z. Zhang, W. D. Zhong, and B. Mukherjee, “A heuristic method for design of survivable WDM networks with p-cycles,” IEEE Communications Letters, vol. 8, no. 7, July 2004, pp. 467-469.
[63] R. Ramamurthy et al., “Capacity performance of dynamic provisioning in optical networks,” IEEE/OSA J. Lightwave Tech., vol. 19, Jan. 2001, pp. 40–48.
[64] O. Gerstel and R. Ramaswami, “Optical layer survivability – An implementation perspective,” IEEE Journal of Selected Area of Commu., vol. 18, Oct. 2000, pp. 1885–1899.
[65] R. Ramamurthy, L. Sahasrabuddhe, and B. Mukherjee, “Survivable WDM mesh networks,” IEEE Journal of Lightwave Technology, vol. 21, No. 1, Apr. 2003, pp. 870-883.
[66] J. Strand, A. Chiu, and R. Tkach, “Issues for routing in the optical layer,” IEEE communication magazine, vol. 39, Feb. 2001, pp. 81-87.
[67] B. T. Doshi, S. Dravida, P. Harshavardhana, O. Hauser, and Y. Wang, “Optical network design and restoration,” Bell Labs. Tech. J., pp. 58–84, Jan.–Mar. 1999.
[68] C. F. Su and X. Su, “An on-line distributed protection algorithm in WDM networks,” in Proceedings of IEEE ICC’01, June 2001, pp. 719-725.
[69] C. Ou et al., “Traffic grooming for survivable WDM networks – Shared protection,” IEEE Journal of Selected Area of Commu., vol. 21, Nov. 2003, pp. 1367–1383.
[70] E. Modiano and A. Narula-Tam, “Survivable lightpath routing: A new approach to the design of WDM-based network,” IEEE Journal of Selected Areas in Commu., vol. 20, May 2002, pp. 800-809.
[71] M. Kodialam and T. V. Lakshman, “Dynamic routing of restorable bandwidth guaranteed tunnels using aggregated network resource usage information,” IEEE/ACM Trans. of Networking, vol.11, no 3, Jun. 2003, pp. 399-410.
[72] O. Gerstel, “Opportunities for optical protection and restoration,” IEEE OFC’98, Technical Digest, Feb. 1998, pp. 269-270.
[73] J. Zhang et al., “Service provisioning to provide per-connection-based availability guarantee in WDM mesh networks,” IEEE OFC’03, Mar. 2003 (expanded version in ICC’03, May 2003).
[74] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest pairs of disjoint paths,” IEEE Networks, vol. 14, 1984, pp. 325–336.
[75] A. Fumagalli, et al. “Survivable networks based on optimal routing and WDM self-healing rings,” in Proceedings, IEEE Infocom’99, vol. 2, March 1999, pp. 726-733.
[76] Y. Miyao and H. Saito, “Optimal design and evaluation of survivable WDM transport network,” IEEE Journal of Selected Area of Communications, vol. 16, no. 7, Sept. 1998, pp. 1190-1198.
[77] C. Ou, J. Zhang, H. Zang, L. H. Sahasrabuddhe, and B. Mukherjee, “New and improved approaches for shared-path protection in WDM mesh networks,” Journal of Lightwave Technology, vol. 22, no. 5, May 2004, pp. 1223-1232.
[78] Y. Xiong, D. Xu, and C. Qiao, “Achieving fast and bandwidth-efficient shared-path protection,” Journal of Lightwave Technology, vol. 21, no. 2, Feb. 2003, pp. 365-371.
[79] A. Fumagalli et al., “Shared path protection with differentiated reliability,” in Proceedings of IEEE ICC’02, Apr. 2002, pp. 2157–2161.
[80] Dahai Xu, Yizhi Xiong and Chunming Qiao, “Novel algorithms for shared segment protection,” IEEE Journal of Selected Areas in Communications, vol. 21, no. 8, Oct. 2003, pp. 1320–1331.
[81] S. Lumetta, M. Medard, and Y.-C. Tseng, “Capacity versus robustness: A tradeoff for link restoration in mesh networks,” J. Lightwave Technology, vol. 18, 2002, pp. 1765-1775.
[82] G. Ellinas, A. Hailemariam, and T. E. Stern, “Protection of a priority connection from an optical switch failure in mesh networks with planar topologies,” in Proc. IEEE/OSA OFC’99, SanDiego, CA, Feb. 1999.
[83] O. J. Wasem, “An algorithm for designing rings for survivable fiber networks”, IEEE Transaction on Reliability, Vol. 3, 1991, pp. 57.5.1~57.5.7.
[84] L. Sahasrabuddhe, S. Ramamurthy, and B. Mukherjee, “Fault management in IP-over-WDM networks: WDM protection versus IP restoration,” IEEE Journal of Selected Areas in Communications, vol. 20, Jan. 2002, pp. 21–33.
[85] A. Fumagalli and L. Valcarenghi, “IP restoration vs. WDM protection: is there an optimal choice?,” IEEE Network, vol. 14, Nov./Dec. 2000, pp. 34–41.
[86] C. S. Ho and S. Y. Kuo, “A novel restoration scheme using protection domain under dynamic traffic demands in WDM networks,” ICOIN’03, Jeju, Korea, Feb. 2003, pp. 1597-1606.
[87] Hui Zang, et al., “Path-protection routing and wavelength assignment (RWA) in WDM mesh networks under duct-layer constraints,” IEEE/ACM Transaction on Networking, vol. 11, no. 2, April 2003, pp. 248-258.
[88] R. Doverspike and J. Yates, “Challenge for MPLS in optical network restoration”, IEEE Communication magazine, Vol. 39, No. 2, Feb. 2001, pp. 89-96.
[89] A. Shami, C. Assi, and M. Ali, “Performance evaluation of two GMPLS-based distributed control and management protocols for dynamic lightpath provisioning in future IP networks,” in Proceedings of IEEE ICC’02, New York, 2002.
[90] M. Garey, R. Graham, and D. Johnson, “The complexity of computing Steiner minimal trees,” SIAM J. Appl. Math., vol. 32, 1977, pp.835-859.
[91] Kejie Lu, J. P. Jue, T. Ozugur, Gaoxi Xiao, I. Chlamtac, “Intermediate-node initiated reservation (IIR): a new signaling scheme for wavelength-routed networks with sparse conversion,” in Proceedings of IEEE ICC’03, vol. 2, May 2003, pp. 1386–1390.
[92] J. Zheng, B. Zhang, H. T. Mouftah, “Dynamic path restoration based on multi-initiation for GMPLS-based WDM networks,” IEEE ICC’04, vol. 3, June 2004, pp. 1639–1643.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33585-
dc.description.abstract隨著網際網路用戶的快速成長與網路服務的多樣化,整合媒體資訊傳輸的串流資料傳輸需求與日劇增,高速寬頻網路是目前發展的趨勢,隨之而來的是必須提供高效率的服務品質保證。而光纖通訊技術的發展,為寬頻網路多媒體時代帶來了巨大的效益,已成為解決頻寬不足的最佳選擇和必要的選項。其中,又以多波長分波多工光纖網路為近年來發展與研究的重點。無論是在長途骨幹網路或是介接區域網路間的都會光纖網路,考量因應錯誤發生時之網路備援容量的設計方案,是刻不容緩的議題,該如何建構一個快速回復效率且達到低容量成本的多波長分波多工光纖網路容錯環境,是本論文研究的重點所在。
本論文在第一章對多波長分波多工光纖網路的相關背景做一介紹。首先描述分波多工的技術原理,其次說明光網路的進展,包含了從早期的點對點系統轉移至波長接取移除多工設備,再轉換至光波長跨接設備之光網路系統(包括被動路由器與主動開關等)。接下來說明光網路的建構方式,包含較適合用在區域及都會網路的廣播選擇式網路與較適合用在廣域網路的波長路由式網路,而後者也是本論文主要的探討對象。然後是對WDM網路的研究重點做一整理與說明,包含了網路控管、錯誤管理、群播技術、IPoWDM、訊務聚合、OPS技術等。最後則是補充說明Translucent網路的相關議題。
在第二章則是著重在環狀網路與網狀網路的錯誤處理架構介紹。環狀網路擁有快速的錯誤回復速度,但是在頻寬使用效益及路由彈性上顯得較差。相對的,網狀網路擁有較高的頻寬與路由效率,但是可能無法提供如環狀網路的錯誤回復速度。因此,如何結合此二者之優點而提出一整合解決方案則是目前學者研究的重點。在本章我們首先說明錯誤的型態及發生率,而後簡介傳統及新型的連線保護與回復方案,包含了鏈路保護,路徑保護,子路徑保護與環狀保護,接下來提出為達到保護目的所必須使用的連線允入演算法之基本架構,針對WDM環狀與網狀網路的保護相關議題也將一併介紹,最後則是對動態回復機制做整理及討論。
在第三章將提出使用群保護(group protection)的新架構。其目標是希望能建構一種在動態多波長分波多工光纖網路上的保護機制,同時擁有環的回復速度與網狀網路的成本效益,在國外有著名的學者早已提出使用事先組態保護環(p-cycles)的技術,然而p-cycles由於考量備援容量之最佳化,因此並不非常適合用在動態網路。群也是屬於環狀保護的一種,然而群的形成是動態的,其負責保護座落於群中的各個主要連線線段,而這些主要連線線段則是共享此群之邊緣線段做為保護線段。由於群的動態保護特性,使得其在頻寬使用效率上可達到最佳配置;而由於各群的大小及周長限制,使得各群內的錯誤回復之最大延遲與保護品質獲得保證,同時各群之錯誤也因此被隔離而可獨立回復。我們將描述此種保護機制的細節以及探討其對不同網路效能參數的影響。
在第四章將探討針對在WDM網路中之行動使用者,對其之連線要求提供保護之解決方案。在過去及已知的研究,皆是基於使用者在連線期間皆處於固定的服務邊緣路由器範圍。然而,隨著快速行動服務之應用日趨增加,有必要考慮此種情境下之動態保護。顯而易見的,如果是使用reactive方式的保護機制,將使得使用者做換手時之時間延遲增加,甚至當動態資源無法取得時,原來之連線將被迫中斷。因此,在一開始做可存活性路由與波長設定時便有必要為將來可能的移動所需容量做預先保留,一旦使用者移動後便可立即切換至預留頻道,如此最多只需多花費一次可存活性路由與波長之成本。在做法上則是分為兩步驟處理,第一步驟是為此新連線要求建立一個主動路徑樹,此樹在拓樸上為一最小成本反向群播樹;次一步驟則是為此樹保留保護資源。由於保護配置的方式有多種選擇,我們比較了不同的保護機制之效率,並說明如何將群保護應用到此種環境上。
由於控制訊令之負擔可能對保護策略造成效能上的重大影響,因此在本論文的第五章我將針對比較重要的分享式保護策略(包括分段、子路徑與群保護)做控制訊令負擔之分析。由錯誤回報訊息是否會送達來源端來做分類,控制訊令分析包含了來源相關與來源無關的不同方式。我們發展了在來源相關方式下的延遲時間估算演算法,同時也加以分析群保護機制的最差情況訊令複雜度。接下來則是提出了一個回復路徑平衡為基礎的可存活性路由與波長設定演算法,此演算法之最主要精神為在群保護之基礎上期望使得各群中相對於某主要工作路段的保護路段能在時間延遲上大致相等,如此則能獲取在控制訊令之廣播泛流時負載平衡的好處。最後則是提出了一個可在網路各節點執行分散式控制的有限狀態機。
在最後一單元將說明未來及正在進行的研究主題與計劃,包含了將IPv6 單播(anycast)選項與通用多重標籤交換協定(GMPLS)中群組管理功能結合成為Integrated IPoDWDM solution的協定設計,以及考慮爆發式訊務下之系統效能分析。其次是提出新型態之錯誤模型與開發相關之SRWA演算法,同時亦考慮分享風險群組之容錯。最後,則是探討回復資源與回復時間之極小化修復排程中啟發演算法開發與群保護機制之運用等主題。希望經由這些計畫的研究,找出適用於不同網路環境下的容錯架構與協定。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-13T04:48:48Z (GMT). No. of bitstreams: 1
ntu-95-D89921020-1.pdf: 1939067 bytes, checksum: 8c5b6d2a76f54d50ef9e277ce4980c06 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsABSTRACT 6
LIST OF FIGURES 10
LIST OF TABLES 12
CHAPTER 1 INTRODUCTION TO WDM TECHNOLOGY 13
1.1 INTRODUCTION 13
1.2 WAVELENGTH-DIVISION MULTIPLEXING (WDM) 14
1.3 WDM NETWORKING EVOLUTION 15
1.4 NEW AND INTERESTING WDM TECHNOLOGIES 17
1.5 WDM NETWORK CONSTRUCTIONS 18
1.6 RECENT TRENDS IN WDM RESEARCH 22
1.7 TRANSLUCENT WDM NETWORK 31
CHAPTER 2 OVERVIEW OF FAULT MANAGEMENT IN WDM NETWORKS 35
2.1 INTRODUCTION 35
2.2 BASIC CONCEPTS IN FAULT MANAGEMENT 38
2.2 SURVIVABLE ROUTING AND WAVELENGTH ASSIGNMENT 42
2.3 WDM RING PROTECTION 44
2.4 WDM MESH PROTECTION 46
2.4 DYNAMIC RESTORATION 57
2.5 CONCLUSION 58
CHAPTER 3 GROUP-BASED PROTECTION 59
3.1 OUTLINE 59
3.2 PROTECTION GROUP CONCEPT 62
3.3 STATIC GROUP PROTECTION 68
3.4 DYNAMIC GROUPING PROTECTION 80
3.5 CONTROL MECHANISM 88
3.6 SIMULATION STUDY 90
3.7 DISCUSSIONS 99
3.8 CONCLUSION 106
CHAPTER 4 DYNAMIC PROTECTION IN MOBILITY OVER WDM OPTICAL NETWORKS 107
4.1 MOTIVATION 107
4.2 PROBLEM STATEMENT AND BASIC STRATEGIES 112
4.3 CYCLE-BASED PROTECTION 123
4.4 GROUP-BASED PROTECTION SCENARIO 126
4.5 SIMULATION STUDY 130
4.6 CONCLUSION 138
CHAPTER 5 SIGNALING OVERHEAD ANALYSIS FOR PARTITION-BASED PROTECTION 140
5.1 OVERVIEW 140
5.2 SIGNALING OVERHEAD IN PARTITION-BASED PROTECTION SCHEMES 141
5.3 DISTRIBUTED CONTROL MECHANISM FOR GROUP PROTECTION 154
5.4 SIMULATION STUDY 159
5.5 CONCLUSION 163
CHAPTER 6 FUTURE WORK AND RESEARCH PLAN 164
6.1 PROTECTION/RESTORATION ALGORITHM AND PROTOCOL DESIGN ON IPV6/GMPLS/WDM NETWORKS 165
6.2 MULTIPLE FAILURE PROTECTION IN OPTICAL WDM NETWORKS 169
6.3 RESTORATION SCHEDULING IN SURVIVABLE WDM NETWORKS 171
REFERENCES 175
PUBLICATION LIST 182
dc.language.isoen
dc.subject分波多工網路zh_TW
dc.subject可存活性zh_TW
dc.subject保護zh_TW
dc.subjectSurvivabilityen
dc.subjectWDM networken
dc.subjectProtectionen
dc.titleWDM光網路之動態保護與可存活性設計zh_TW
dc.titleDynamic Protection and Survivable Design for Optical WDM Networksen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee雷欽隆,顏嗣鈞,王勝德,趙涵捷,王國禎,陳英一,黃慶育
dc.subject.keyword可存活性,保護,分波多工網路,zh_TW
dc.subject.keywordSurvivability,Protection,WDM network,en
dc.relation.page184
dc.rights.note有償授權
dc.date.accepted2006-07-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved