Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33576
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李達源
dc.contributor.authorShu-Yung Linen
dc.contributor.author林書庸zh_TW
dc.date.accessioned2021-06-13T04:48:17Z-
dc.date.available2006-07-21
dc.date.copyright2006-07-21
dc.date.issued2006
dc.date.submitted2006-07-16
dc.identifier.citation許永瑜。1990。鋅鉻對水稻與蔬菜在台灣主要土類中毒害臨界濃度之探討。國立中興大學土壤學研究所碩士論文。
常立志。1997。皮革粉肥料施用土壤後鉻釋出之評估。台肥月刊 38(11):3-11。
行政院環保署。2002。農地土壤重金屬調查與場址列管計劃。EPA 計劃編號044910075。
經濟部工業局。2003。協助皮革業共同清除處理機構進行皮革廢棄物資源化相關試驗計劃。92年度工業廢棄物共同清除處理輔導計劃報告。
李達源。2004。水田土壤有效性六價鉻之現址監測與其對水稻之毒害評估。行政院農業委員會農糧署主管科技計畫。(93農科-8.2.3-糧-Z1)報告。
李健捧、陳榮五、陳世雄。2005。有機質肥料對水田土壤與水稻生育
的影響。有機肥料之施用對土壤與作物品質之影響研討會。P.105-117。
Adriano, D. C. 1986. Trace elements in the environment. Chapter 5: Chromium. Springer-Verlag, New York.
Arnfalk, P., A. Wasay, and S. Tokunaga. 1996. A comparative study of Cd,
Cr(III), Cr(VI), Hg, and Pb uptake by minerals and soil materials. Water, Air Soil Pollut. 87: 131-148.
Ball, D. F. 1964. Loss-on ignition as estimate of organic matter and organic
carbon in non-calcareous soils. J. Soil Sci. 15: 84-92
Bartlett, R. J., and J. M. Kimble. 1976a. Behavior of chromium in soil: I. Trivalent form. J. Environ. Qual. 5: 379-383.
Bartlett, R. J., and J. M. Kimble. 1976b. Behavior of chromium in soil: II. Hexavalent form. J. Environ. Qual. 5: 383-386.
Bartleet, R., and B. R. James. 1996. Chromium. P. 683-701. In A. L. Page et al. (ed.) Methods of soil analysis, 3rd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Bolan, N. S., and S. Thiagarajan. 2001. Retention and plant availability of chromium in soils as affected by lime and organic matter amendments. Aust. J. Soil Res. 39: 1091-1103.
Bolan, N. S., D. C. Adriano, R. Natesan, and B. J. Koo. 2003. Effect of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J. Environ. Qual. 32: 120-128.
Bremner, J. M., and C. S. Mulvaney. 1982. Salicylic acid-thiosulfate modification on Kjeldahl method to include nitrate and nitrite. P. 621-622. In A. L. Page (ed.) Methods of Soil Analysis Part 2. Academic Press, New York, USA.
Carey, P. L., R. G. McLaren, K. C. Cameron, and J. R. Sedcole. 1996. Leaching of copper, chromium and arsenic through some free-draining New Zealand soils. Aust. J. Soil Res. 34: 583-597.
Ciavatta, C. and P. Sequi. 1989. Evaluation of chromium release during the decomposition of leather meal fertilizers applied to the soil. Fere. Res. 19: 7-11.
Davis, B. E. 1974. Loss-on-ignition as an estimate of soil organic matter.
Soil Sci. Soc. Am. Proc. 38: 150-151.
Dell'Abate,M. T., A. Benedetti, A. Trinchera, D. Galluzzo. 2003. Nitrogen
and carbon mineralisation of leather meal in soil as affected by particle size of fertiliser and microbiological activity of soil. Biol Fert Soils. 37 (2): 124-129.
Figura, P., and B. McDuffie. 1977. Characterization of the calcium form of chelex 100 for trace metal studies. Anal. Chem. 49: 1950-1953.
Figura, P., and B. McDuffie. 1979. Use of chelex resin for determination of labile trace metal fractions in aqueous ligand media and comparison of the method with anodic stripping voltammetry. Anal. Chem. 51: 120-125.
Figura, P., and B. McDuffie. 1980. Determination of labilities of soluble trace metal species in aqueous environmental sample by anodic stripping voltammetry and chelex column and catch methods. Anal. Chem. 52: 1433-1439
Fernandes, M. L. V., F. Calouro, and M. M. Abreu. 2002. Application of chromium to soils at different rates and oxidation states. I. Effect on dry matter yield and chromium uptake by radish. Commun. Soil Sci. Plant Anal. 33: 2259-2268.
Garrels, R. M., and C. L. Christ. 1965. Solutions, minerals and equilibria. Haper and Row Publishers, New York. P. 450.
Gee, G. W., and J. W. Bauder. 1986. Partical-size analysis. P. 383-411. In A.
Klute (ed.) Method of soil analysis, 2nd ed. ASA and SSSA, Madison, WI.
Griffin, R. A., A. K. Au, and R. R. Frost. 1977. Effect of pH [hydrogen-ion concentration] on adsorption of chromium from landfill-leachate by clay minerals. J. Environ. Sci. Health, Part A. Environ. Sci. Eng. 12(8): 431-449.
Grubinger, V. P., W. H. Gutenmann, and G. J. Doss. 1994. Chromium in Swiss chard grown on soil amended with tannery meal fertilizers. Chemosphere 28: 717-720.
Han, F. X., B. B. M. Sridhar, D. L. Monts, and Y. Su. 2004. Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea. New Phytol. 162: 489-499.
Jackson, M. L. 1979. Redox potential measurement for soils. P. 649-687. Soil chemical analysis- Advance course, 2nd ed. PMadison, WI.
James, B. R., and R. J. Bartlett. 1983c. Behavior of chromium in soil: VII. Adsorption and reduction of hexavalent forms. J. Environ. Qual. 12: 177-181.
Jones, J. B., and V. W. Case. 1990. Sampling, Handling, and analyzing plant tissue samples. P. 389-427. In R. L. Westerman (ed.) Soil testing and plant analysis, 3rd ed. Soil Science Society of America, Inc., Madison, Wisconsin, USA.
Kabata-Pendias, A. and H. Pendias. 1992. Trace elements in soils and plants, 2nd ed. CRC Press, Boca Raton.
Kozuh, N., J. Stupar, and B. Gorenc. 2000. Reduction and oxidation process of chromium in soils. Environ. Sci. Technol. 34: 112-119.
Lee, D. Y. and H. C. Zheng. 1993. Chelating resin membrane method for estimation of soil cadmium phytoavailability. Commun. Soil Sci. Plant Anal. 24: 685-700.
Lee, D. Y. and H. C. Zheng. 1994. Simultaneous extraction of soil phytoavailable cadmium, copper, and lead by chelating resin membrane. Plant Soil 164: 19-23.
Lee, D. Y., P. H. Chiang, and K. H. Houng. 1996. Determination of bioavailable cadmium in paddy fields by chelating resin membrane embedded in soils. Plant Soil 181: 233-239.
Lee, D. Y., J. C. Huang, K. H. Juang, and L. Tsui. 2005. Assessment of phytotoxicity of chromium in flooded soils using embedded selective ion exchange resin method. Plant Soil 277: 97-105.
Lee, D. Y., Y. N. Shih, H. C. Zheng, C. P. Chen, K. W. Juang, J. F. Lee, and L. Tsui. 2006. Using the selective ion exchange resin extraction and XANES methods to evaluate the effect of compost amendments on soil chromium (VI) phytotoxicity. Plant Soil 281: 87-96.
Losi, M. E., C. Amrhein, and W. T. Frankenberger. 1994. Bioremediation of chromate-contaminated groundwater by reduction and precipitation in surface soils. J. Environ. Qual. 23: 1141-1150.
McGrath, S. P. 1982. The uptake and translocation of tri- and hexa-valent chromium and effects on the growth of oat in flowing nutrient solution and in soil. New Phytol. 92: 381-390.
McLean, E. O. 1982. Soil pH and lime requirement. P. 199-224. In A. L. Page et al. (ed.) Methods of soil analysis. Part. 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Mortvedt, J. J., and P. M. Giordano. 1975. Response of Corn to Zinc and Chromium in Municipal Wastes Applied to Soil. J. Environ. Qual. Vol. 4. 2: 170-174.
Rabenhorst, M. C. 1988. Determination of organic carbon in calcareous soils using dry combustion. Soil Sci. Soc. Am. J. 52: 965-969.
Rai, D., L. E. Eary, and J. M. Zachara. 1989. Environmental chemistry of chromium. Sci. Total Environ. 86: 15-23.
Rengan, K. 1997. Chelating resins: Sorption characteristics in chloride media. J. Radioanal. Nual. Chem. 219: 211-215.
Saleh, F., T. F. Parkerton, R. V. Lewis, J. H. Huang, and K. L. Dickson. 1989. Kinetics of chromium transformations in the environment. Sci. Total Environ. 86: 25-41.
Shaffer, R. E., J. O. Cross, S. L. Rose-Pehrsson, and W. T. Elam. 2001. Speciation of chromium in simulated soil samples using X-ray absorption spectroscopy and multivariate calibration. Anal. Chim. Acta. 442: 295-304.
Sigma. 2002. Sigma-Aldrich Co. USA.
Soon, Y. K. and S. Abboud. 1991. A comparision of some methods for soil organic carbon determination. Commun. Soil Sci. Plant Anal. 22: 943-954.
Stewart, M. A., P. M. Jardine, C. C. Brandt, M. O. Barnett, S. E. Fendorf, L. D. McKay, T. L. Mehlhorn, and K. Paui. 2003. Effects of contaminant concentration, aging, and soil properties on the bioaccessibility of Cr(III) and Cr(VI) in soil. Soil Sediment Contamin. 12: 1-12.
Szulczewski, M. D., P. A. Helmke, and W. F. Bleam. 1997. Comparison of XANES analyses and extractions to determine chromium speciation in contaminated soils. Environ. Sci. Technol. 31: 2954-2959.
Turner, M. A. and R. H. Rust. 1971. Effects of chromium on growth and mineral nutrition of soybeans. Soil Sci. Soc. Am. J. 35: 755-758.
Vazquez, M. D., C. Poschenrieder, and J. Barcelo. 1987. Chromium (VI) induced structural and ultrastructural changes in bush bean plants (phseolus vulgaris L.). Ann. Bot. 59: 427-438.
Wei, Y. L., S. Y. Chiu, H. N. Tsai, Y. W. Yang, and J. F. Lee. 2002. Thermal Stabilization of chromium (VI) in kaolin. Environ. Sci. Technol. 36: 4633-4641.
Wallace, A., S. M. Soufi, J. W. Cha, and E. M. Romney. 1976. Some effects of chromium toxicity on bush bean plants grown in soil. Plant Soil. 44: 471-473.
Yamaguchi, T. and S. Aso. 1977. Chromium from the standpoint of plant nutrition. I. Effect of chromium concentration on the germination and growth of several kinds of plants. J. Sci. Soil Manure Jpn. 48: 466-470.
Yu P. F., Juang K. W. and Lee D. Y. 2004. Assessment of the phytotoxicity of chromium in soils using the selective ion exchange resin extraction method. Plant Soil 258: 333-340.
Zachara, J. M., C. C. Ainsworth, C. E. Cowen, and C. T. Resch. 1989. Adsorption of chromate by subsurface soil horizons. Soil Sci. Soc. Am. J. 53: 418-428.
Zayed, A., C. M. Lytle, J. Qian, and N. Terry. 1998. Phytoaccumulation of trace elements by wetland plants: I. Duckwood. J. Environ. Qual. 27: 715-721.
Zayed, A. M., and N. Terry. 2003. Chromium in the environment: factors affecting biological remediation. Plant Soil. 249: 139-156.
Zhao, D., A. K. SenGupta, and L. Stewart. 1998. Selective removal of Cr(VI) oxyanions with a new anion exchanger. Ind. Eng. Chem. Res. 37: 4383-4387.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33576-
dc.description.abstract鉻在土壤中以三價陽離子或是六價陰離子的型態存在,雖然三價鉻的毒性、有效性和移動性都比六價鉻低,然而在土壤中之有效性三價鉻濃度高時是否會造成作物的危害也值得關切。另外,國內皮革業廢棄物資源化所製成之蒸製皮革粉也含有高含量之三價鉻,曾被用來配製有機質肥料,若大量而長期施用由皮革粉配製而成之有機質肥料至土壤中是否會造成三價鉻的累積而造成作物毒害也值得探討。本研究主要以鉗合性樹脂 (Chelex100) 抽出法評估添加三價鉻和皮革粉至台灣代表性水田土壤中Cr(Ⅲ) 之有效性,並種植水稻幼苗,進行供試土壤中樹脂可抽出性Cr(Ⅲ) 含量與水稻幼苗生長之相關性評估。本研究選用平鎮系、將軍系及太康系三種代表性土壤的表土,作為供試土壤,添加CrCl3至土壤中,製備成0、175、250、500、1000、2000 Cr(Ⅲ) mg kg-1soil六種處理之Cr(Ⅲ) 添加土壤。結果顯示平鎮系土壤、將軍系土壤及太康系土壤之Cr(Ⅲ)添加量分別大於175、500及1000 mg kg-1soil時,水稻幼苗生長有毒害癥狀。在三個供試土壤造成水稻生長毒害不同之原因,推測是由於土壤pH:平鎮系 < 將軍系 < 太康系,Cr(Ⅲ) 之植物有效性為平鎮系>將軍系>太康系所造成。在添加皮革粉之試驗,三種供試土壤分別添加1 %、5 %、10 %、20 % 之皮革粉,相當於製備成含有89.8 ~ 1796.2 Cr(Ⅲ) mg kg-1soil的土壤。平鎮系土壤添加大於1 % 之皮革粉,就產生毒害,將軍系和太康系皆在大於5 % 之皮革粉產生毒害。推測由於酸性土壤中皮革粉中的Cr(Ⅲ) 較容易釋出,因此較易造成作物毒害。結果也顯示供試土壤中樹脂可抽出性Cr(Ⅲ) 含量與水稻幼苗生長呈現顯著負相關,表示利用土壤中鉗合性樹脂可抽出Cr(Ⅲ) 的含量,能作為植物有效性Cr(Ⅲ) 含量的指標。由土壤樹脂可抽出之Cr(Ⅲ) 含量與水稻株高之劑量-反應關係曲線,推估降低水稻生長20 % 之土壤樹脂可抽出之Cr(Ⅲ)含量 (Effective concentration, EC20),添加三價鉻處理之EC20為2.75 mg kg-1;添加皮革粉處理之EC20為2.67 mg kg-1。綜合以上結果顯示土壤中Cr(Ⅲ)對於作物生長可能造成危害,其對環境或植物之威脅還是不可忽視。施用皮革粉造成高量Cr(Ⅲ) 之釋出亦會使作物產生毒害,尤其在酸性土壤,皮革粉的施用對作物危害之風險也不容忽視。zh_TW
dc.description.abstractChromium is present in soils in Cr(Ⅲ) cation or Cr(Ⅵ) oxyanion forms. Although the toxicity, availability, and mobility of Cr(Ⅲ) is smaller than those of Cr(Ⅲ), the phytotoxicity of Cr(Ⅲ) resulting from high amounts of available Cr(Ⅵ) in soils is needed to be concerned. The leather meal containing large amounts of Cr(Ⅲ), produced from residues of tanning industry, was used for making organic fertilizers. There is concern that large amounts of Cr(Ⅲ) accumulated in soils due to long term’s application of large amounts of leather meal may cause toxic effect on crop growth. Therefore, in this study, a chelating ion exchange resin (Chelex 100) extraction method was used to evaluate the availability of Cr(Ⅲ) in representative paddy soils of Taiwan spiked with Cr(Ⅲ) or added with leather meal. The relationship between the soil resin-extractable Cr(Ⅲ) and the growth of rice seedlings grown on the tested Cr(Ⅲ)-spiked or leather-meal-added soils was investigated. Three soils, Pinchen (Pc), Chengchung (Cf), and Taikang (Tk), were used and treated with five levels of Cr(Ⅲ), i.e. 0, 175, 250, 500, 1000, and 2000 Cr(Ⅲ) mg kg-1soil in the form of CrCl3. The results showed that the growth of rice seedlings was inhibited when the amounts of Cr(Ⅲ) spiked were larger than 175 mg kg-1soil for Pc soil, 500 mg kg-1soil for Cf soil, and 1000 mg kg-1soil for Tk soil respectively. The results was due to the availability of Cr(Ⅲ) in there tested soils is in the order of Pc > Cf > Tk, resulting from the order of soil pH Pc < Cf < Tk. In the experiments of soils added with various amounts of leather meal (0, 1, 5, 10, and 20 %), the results showed that the growth of rice seedlings was inhibited when the amounts of leather meal added were larger than 1 % for Pc soil, and 5 % for Cf and Tk soils. The results was also due to that the availability of Cr(Ⅲ) released from leather-meal-added acidic Pc soils is larger than that of the other two soils. In addition, the results showed that there was a sigmoidal relationship between soil resin-extractable Cr(Ⅲ) and the plant height of rice seedlings and the obtained effective concentrations of resin extractable Cr(Ⅲ) resulting in 20% growth inhibition (EC20) were 2.75 and 2.67 mg kg-1 respectively for Cr(Ⅲ)-spiked and leather-meal-added soils. The above results suggest that the hazardous effect of Cr(Ⅲ) on crop growth and the risk caused by large amounts of Cr(Ⅲ) released from leather-meal-added soils, especially in acid soils, can not be ignored.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:48:17Z (GMT). No. of bitstreams: 1
ntu-95-R93623009-1.pdf: 1113309 bytes, checksum: 0a6fea6537fd1475c936c971f73e0db7 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄 頁次
前言 1
前人研究 4
一、鉻在環境中的污染 4
二、水溶液中鉻的型態 4
三、鉻在土壤中的型態 5
研究目的 10
材料與方法 11
一、選擇性離子交換樹脂 ( Chelex100 ) 之製備 11
二、樹脂袋製作流程和步驟 13
三、選擇性離子交換樹脂 ( DOWEX M4195 ) 之製備 16
四、供試土壤的理化性質分析 20
五、皮革粉之基本性質分析 23
六、添加Cr(Ⅲ)或皮革粉孵育土壤之製備 25
七、以樹脂( Chelex100 )抽出添加Cr(Ⅲ)土壤及添加皮革粉
培育土壤之有效性三價鉻 27
八、以樹脂( DOWEX M4195 )抽出添加Cr(Ⅲ)土壤及添加皮革粉
培育土壤之有效性六價鉻 28
九、X光吸收近邊緣結構光譜(XANES )測定 30
十、水稻幼苗之生長試驗 33
十一、水稻幼苗生長試驗之植體分析 37
十二、統計分析 38
結果與討論 39
一、供試土壤之理化性質 39
二、皮革粉之基本性質 39
三、添加Cr(Ⅲ)供試土壤、施用皮革粉培育土壤及皮革粉,
此三者之Cr形態鑑定 43
四、添加Cr(Ⅲ) 供試土壤及施用皮革粉培育土壤之土壤pH、
土壤EC及土壤Eh 49
五、供試土壤之樹脂 (Chelex100) 抽出有效性Cr(Ⅲ)含量 57
六、供試土壤之水稻幼苗生育調查 70
七、水稻幼苗生長試驗之植體分析 75
結論與建議 78
參考文獻 79
dc.language.isozh-TW
dc.subject離子交換樹脂抽出法zh_TW
dc.subject鉻zh_TW
dc.subject皮革粉zh_TW
dc.subjectLeather mealen
dc.subjectIon exchange resin extraction methoden
dc.subjectChromiumen
dc.title三價鉻在水田土壤中之有效性與其對水稻之毒害評估zh_TW
dc.titleAssessment of availability of Cr(Ⅲ) in paddy soils and its toxicity to rice plantsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳仁炫,鍾仁賜,陳尊賢,何聖賓
dc.subject.keyword鉻,皮革粉,離子交換樹脂抽出法,zh_TW
dc.subject.keywordChromium,Leather meal,Ion exchange resin extraction method,en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2006-07-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved