Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33574
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor雷欽隆(Chin-Laung Lei)
dc.contributor.authorKuan-Ta Chenen
dc.contributor.author陳寬達zh_TW
dc.date.accessioned2021-06-13T04:48:10Z-
dc.date.available2006-07-21
dc.date.copyright2006-07-21
dc.date.issued2006
dc.date.submitted2006-07-17
dc.identifier.citation[1] EverQuest. http://everquest.station.sony.com/.
[2] Gametrics weekly Korea MMORPG population survey. BB Serve, Inc.
[3] ShenZhou Online. UserJoy Technology Co., Ltd.
[4] World of Warcraft. http://www.worldofwarcraft.com/.
[5] FAQ - Multiplayer and Network Programming. GameDev.Net, 2004.
[6] P. Abry and D. Veitch. Wavelet analysis of long-range-dependent traffic. IEEE Trans. Information Theory, 44(1):2–15, Jan 1998.
[7] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC 2581, Apr. 1999.
[8] G. Armitage. An experimental estimation of latency sensitivity in multiplayer Quake 3. In 11th IEEE International Conference on Networks (ICON 2003), 2003.
[9] R. A. Bangun, E. Dutkiewicz, and G. J. Anido. An analysis of multi-player network games traffic. In Proceedings of the 1999 International Workshop on Multimedia Signal Processing, pages 3–8, Copenhagen, Denmark, Sept. 1999.
[10] S. A. Baset and H. Schulzrinne. An analysis of the Skype peer-to-peer internet telephony protocol. In Proceedings of IEEE INFOCOM'06, Barcelona, Spain, Apr. 2006.
[11] N. E. Baughman and B. N. Levine. Cheat-proof playout for centralized and distributed online games. In Proceedings of IEEE INFOCOM 2001, Anchorage, AK, Apr. 2001.
[12] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Claypool. The effects of loss and latency on user performance in Unreal Tournament 2003. In Proceedings of NetGames'04, pages 144–151. ACM Press, 2004.
[13] J. Beirlant and A. Guillou. Pareto index estimation under moderate right censoring. Scandinavian Actuarial Journal, 2:111–125, 2001.
[14] S. M. Bellovin. A technique for counting natted hosts. In IMW '02: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurment, pages 267–272. ACM Press, 2002.
[15] J. C. R. Bennett, C. Partridge, and N. Shectman. Packet reordering is not pathological network behavior. IEEE/ACM Trans. Netw., 7(6):789–798, 1999.
[16] T. Berson. Skype security evaluation. ALR-2005-031, Anagram Laboratorie, 2005.
[17] P. Bloomfield. Fourier Analysis of Time Series: An Introduction. John Wiley & Sons, New York, 2000.
[18] M. S. Borella. Source models of network game traffic. Computer Communications, 23(4):403–410, Feb. 15, 2000.
[19] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122 (Standard), Oct. 1989.
[20] F. Chang and W. chang Feng. Modeling player session times of on-line games. In NetGames '03: Proceedings of the 2nd Workshop on Network and System Support for Games, pages 23–26. ACM Press, 2003.
[21] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei. An empirical evaluation of TCP performance in online games. In Proceedings of ACM SIGCHI ACE'06, Los Angeles, USA, Jun 2006.
[22] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei. Quantifying Skype user satisfaction. In Proceedings of ACM SIGCOMM 2006, Pisa, Itlay, Sep 2006.
[23] K.-T. Chen, P. Huang, C.-Y. Huang, and C.-L. Lei. Game traffic analysis: An MMORPG perspective. In NOSSDAV'05: Proceedings of the International Workshop on Network and Operating Systems Support for Digital Audio and Video, pages 19–24. ACM Press, 2005.
[24] K.-T. Chen, P. Huang, and C.-L. Lei. How sensitive are online gamers to network quality? Communications of the ACM, Nov 2006.
[25] K.-T. Chen, P. Huang, and C.-L. Lei. Game traffic analysis: An MMORPG perspective. Computer Networks, 51(3), 2007.
[26] K.-T. Chen, P. Huang, G.-S. Wang, C.-Y. Huang, and C.-L. Lei. On the sensitivity of online game playing time to network QoS. In Proceedings of IEEE INFOCOM'06, Barcelona, Spain, Apr. 2006.
[27] K.-T. Chen, J.-W. Jiang, P. Huang, H.-H. Chu, C.-L. Lei, and W.-C. Chen. Identifying MMORPG bots: A traffic analysis approach. In Proceedings of ACM SIGCHI ACE'06, Los Angeles, USA, Jun 2006.
[28] K.-T. Chen and C.-L. Lei. Design implications of social interaction in online games. In Proceedings of IFIP ICEC 2006, Cambridge, UK, Sep 2006.
[29] W. S. Cleveland. LOWESS: a program for smoothing scatterplots by robust locally weighted regression. The American Statistician, 35(54), 1981.
[30] D. R. Cox and D. Oakes. Analysis of Survival Data. Chapman & Hall/CRC, June 1984.
[31] D. R. Cox and E. J. Snell. A general definition of residuals (with discussion). Journal of the Royal Statistical Society, B 30:248–275, 1968.
[32] E. Cronin, B. Filstrup, and S. Jamin. Cheat-proofing dead reckoned multiplayer games. In Proc. of 2nd International Conference on Application and Development of Computer Games, Jan 2003.
[33] R. B. D'agostino and M. S. Stephen, editors. Goodness-of-Fit Techniques. Marcel Dekker, New York and Basel, 1986.
[34] P. Danzig, J. Mogul, V. Paxson, and M. Schwartz. The Internet Traffic Archive.
[35] I. Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 36(5):961–1005, Sept. 1990.
[36] M. DeLap, B. Knutsson, H. Lu, O. Sokolsky, U. Sammapun, I. Lee, and C. Tsarouchis. Is runtime verification applicable to cheat detection? In Proceedings of ACM SIGCOMM 2004 workshops on NetGames '04, pages 134–138. ACM Press, 2004.
[37] D. L. Donoho. De-noising by soft-thresholding. IEEE Transactions on Information Theory, 41(3):613–627, May 1995.
[38] J. F‥arber. Network game traffic modelling. In NetGames '02: Proceedings of the 1st Workshop on Network and System Support for Games, pages 53–57. ACM Press, 2002.
[39] W. C. Feng, F. Chang, W. C. Feng, and J. Walpole. A traffic characterization of popular on-line games. IEEE/ACM Transactions on Networking, 13(3):488–500, June 2005.
[40] R. A. Fisher. Tests of significance in harmonic analysis. J. Roy. Stat. Soc., Ser. A, 125:54–49, 1929.
[41] W. A. Fuller. Introduction to statistical time series. John Wiley & Sons, 1996.
[42] P. Golle and N. Ducheneaut. Preventing bots from playing online games. Computers in Entertainment, 3(3):3–3, 2005.
[43] R. Gusella. Characterizing the variability of arrival processes with indexes of dispersion. IEEE J. Select. Areas Commun., 9(2), Feb. 1991.
[44] F. E. Harrell. Regression Modeling Strategies, with Applications to Linear Models, Survival Analysis and Logistic Regression. Springer, 2001.
[45] D. P. Harrington and T. R. Fleming. A class of rank test procedures for censored survival data. Biometrika, 69:553–566, 1982.
[46] J. Hartigan and P. Hartigan. The dip test of unimodality. Ann. Stat., 13:70–84, 1985.
[47] P. M. Hartigan. Computation of the dip statistic to test for unimodality. Appl. Stat., 34(3):320–325, Sept. 1985.
[48] T. J. Hastie and R. J. Tibshirani. Generalized Additive Models. Chapman and Hall, London, 1990.
[49] T. Henderson. Latency and user behaviour on a multiplayer game server. In Proceedings of the Third International COST Workshop (NGC 2001), pages 1–13. Springer-Verlag, 2001.
[50] T. Henderson and S. Bhatti. Modelling user behaviour in networked games. In MULTIMEDIA '01: Proceedings of the Ninth ACM International Conference on Multimedia, pages 212–220. ACM Press, 2001.
[51] T. Henderson and S. Bhatti. Networked games: a QoS-sensitive application for QoS-insensitive users? In RIPQoS '03: Proceedings of the ACM SIGCOMM Workshop on Revisiting IP QoS, pages 141–147. ACM Press, 2003.
[52] D. W. J. Hosmer and S. J. Lemeshow. Applied logistic regression. Wiley, New York, 2 edition, 2000.
[53] S. Ila, D. Mizerski, and D. Lam. Comparing the effect of habit in the online game play of australian and indonesian gamers. In Proceedings of the Australia and New Zealand Marketing Association Conference, 2003.
[54] ITU-T Recommendation P.862. Perceptual evaluation of speech quality (PESQ), an objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs, Feb 2001.
[55] V. Jacobson, C. Leres, and S. McCanne. tcpdump, 1989. ftp://ftp.ee.lbl.gov.
[56] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley & Son, Inc., New York, 1991.
[57] J. D. Kalbfleisch and R. L. Prentice. The Statistical Analysis of Failure Time Data. Wiley-Interscience, 2 edition, August 2002.
[58] E. L. Kaplan and P. Meier. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53:437–481, 1958.
[59] M. Kendall. A new measure of rank correlation. Biometrika, 30:81–93, 1938.
[60] K. Lam, O. Au, C. Chan, K. Hui, and S. Lau. Objective speech quality measure for cellular phone. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 1, pages 487–490, 1996.
[61] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledgement Options. RFC 2018, Oct. 1996.
[62] M. Mauve, V. Hilt, C. Kuhm‥unch, and W. Effelsberg. RTP/I - toward a common application level protocol for distributed interactive media. IEEE Transactions on Multimedia, 2001.
[63] S. McCreary and K. Claffy. Trends in wide area IP traffic patterns: A view from Ames Internet exchange. In Proceedings of 13th ITC Specialist Seminar on Measurement and Modeling of IP Traffic, pages 1–11, 2000.
[64] J. Nichols and M. Claypool. The effects of latency on online madden NFL football. In Proceedings of NOSSDAV'04, pages 146–151. ACM Press, 2004.
[65] T. P. Novak, D. L. Hoffman, and A. Duhachek. The influence of goal-directed and experiential activities on online flow experiences. Journal of Consumer Psychology, 13(1):3–16, 2003.
[66] S. Pack, E. Hong, Y. Choi, llkyu Park, J.-S. Kim, and D. Ko. Game transport protocol: lightweight reliable transport protocol for massive interactive on-line game. In Proceedings of the SPIE, volume 4861, pages 83–94, 2002.
[67] L. Pantel and L. C. Wolf. On the impact of delay on real-time multiplayer games. In Proceedings of NOSSDAV'02, pages 23–29. ACM Press, 2002.
[68] C. Partridge, P. P. Carvey, E. Burgess, I. Castineyra, T. Clarke, L. Graham, M. Hathaway, P. Herman, A. King, S. Kohalmi, T. Ma, J. Mcallen, T. Mendez, W. C. Milliken, R. Pettyjohn, J. Rokosz, J. Seeger, M. Sollins, S. Storch, B. Tober, and G. D. Troxel. A 50-Gb/s IP router. IEEE/ACM Transactions on Networking, 6(3):237–248, 1998.
[69] V. Paxson. Strategies for sound Internet measurement. In IMC '04: Proceedings of the 4th ACM SIGCOMM conference on Internet measurement, pages 263–271. ACM Press, 2004.
[70] V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson modeling. IEEE/ACM Transactions on Networking, 3(3):226–244, 1995.
[71] P. Quax, P. Monsieurs, W. Lamotte, D. D. Vleeschauwer, and N. Degrande. Objective and subjective evaluation of the influence of small amounts of delay and jitter on a recent first person shooter game. In Proceedings of ACM SIGCOMM 2004 workshops on NetGames '04, pages 152–156. ACM Press, 2004.
[72] A. Rix, J. Beerends, M. Hollier, and A. Hekstra. Perceptual evaluation of speech quality (PESQ) - a new method for speech quality assessment of telephone networks and codecs. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 2, pages 73–76, 2001.
[73] N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu. The effect of latency on user performance in Warcraft III. In Proceedings of NetGames'03, pages 3–14. ACM Press, 2003.
[74] S. Singhal and M. Zyda. Networked Virtual Environments: Design and Implementation. ACM Press, Siggraph Series, New York, 1999.
[75] R. W. Stevens. TCP/IP Illustrated, Volume 2: The Implementation. Addison-Wesley, 1995.
[76] K. Suh, D. R. Figueiredo, J. Kurose, and D. Towsley. Characterizing and detecting relayed traffic: A case study using Skype. In Proceedings of IEEE INFOCOM' 06, Barcelona, Spain, Apr. 2006.
[77] T. M. Therneau and P. M. Grambsch. Modeling Survival Data: Extending the Cox Model. Springer, 1st edition, August 2001.
[78] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA: Using hard AI problems for security. In Proceedings of Eurocrypt, pages 294–311, 2003.
[79] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-similarity through high-variability: Statistical analysis of Ethernet LAN traffic at the source level. IEEE/ACM Trans. Networking, 5(1):71–86, 1997.
[80] B. S. Woodcock. An analysis of MMOG subscription growth – version 18.0. http://www.mmogchart.com/.
[81] J. Yan and B. Randell. A systematic classification of cheating in online games. In Proceedings of ACM SIGCOMM 2005 workshops on NetGames '05. ACM Press, 2005.
[82] N. Yee. The Daedalus project.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33574-
dc.description.abstract近幾年來,因為即時互動應用程式(例如線上遊戲)的流行,如何為這類型應用程式提供好的的服務品質提供已成為重要的研究主題。然後,由於目前的網際網路本身並不提供服務品質保證,再加上這類型應用程式的特性-即時性、互動性以及雙向資料傳輸-這些因素加總起來,使得即時互動應用程式的服務品質提供成為一個十分困難的任務。
要為網路應用程式提供高滿意度的使用經驗的困難之一是,不像系統層面的效能指標,例如頻寬或延遲時間,使用者滿意度是抽象而且不可量測的。要解決這個問題的關鍵是,我們必須能夠客觀並有效率地測量使用者對於網路效能的感覺。
我們在這篇論文裡從各個層面來探討要為即時互動應用程式提供服務品質的問題。因為下述原因,我們把研究焦點放在兩種應用程式,網際網路電話(Voice over IP),以及線上遊戲。首先,它們皆被認為是自從World Wide Web流行之後少見的殺手級應用,而且也是許多網路用戶最常使用的軟體。第二點,更重要的是,大眾使用電腦以及網路的主要動機通常脫離不了人際溝通以及娛樂,而網路電話及線上遊戲正是能夠滿足這兩項需求的代表性應用。
我們的研究可大略分為兩部分。第一部分,我們徹底地分析線上遊戲所產生的網路流量。我們的研究目的是發現及確認潛在的效能問題,為日後開發高效能網路遊戲平台建構更穩固的基礎。第二部分,我們嘗試為網路電話及線上遊戲使用者對於網路品質的「感覺」進行客觀地量測。我們的目標是為即時互動應用程式定義客觀的使用者滿意度指標,做為服務品質提供的最佳化基準。
我們的主要貢獻可分為三點:(一)我們指出目前線上遊戲的潛在效能問題,並且提出各種可能的解決方案;(二)我們提出可從使用某項服務的時間,例如玩線上遊戲的時間或者講電話的時間,來推論使用者對於網路服務品質的感覺。另外我們也為Skype應用程式提出一項基於網路品質的使用者滿意度指標,並且提出驗證方法;(三)我們為目前普遍存在網路遊戲的作弊行為-使用機器人程式來進行遊戲-提出解決之道,我們提出的方法特色在於能夠推廣到其它的遊戲,並且能抵擋來自機器人程式設計者的反制。
zh_TW
dc.description.abstractIn recent years, QoS (Quality-of-Service) provisioning for real-time interactive applications, such as online gaming, has been actively discussed because of the popularity of such applications. However, the design of non-QoS-enabled Internet and the requirement of real-timeliness, interactivity, and bi-directionality of the applications together make the goal of QoS provisioning immensely challenging.
One of the main obstacles to provide satisfactory user experience for network applications is that, unlike system-level performance metrics, such as bandwidth or latency, user satisfaction is intangible and unmeasurable. The key to this problem is to measure users' opinions about network performance objectively and efficiently.
We endeavored in this work to explore the problem of QoS-provisioning for real-time interactive applications in a number of aspects. We aim at two applications, VoIP and online gaming, as our target of study for two reasons. First, they are considered killer applications since the emergence of World Wide Web, and have been part of the primary reasons people use the Internet. The second and more important reason is that, interpersonal interaction and entertainment are usually the goals for the mass to use the computer and Internet, where VoIP and online gaming could be seen representative applications that fulfill those fundamental demands.
Our work is classified into two parts. In the first part, we thoroughly analyze the traffic generated from online game playing. We aim to identify potential performance bottlenecks that could be served a basis to develop more efficient network infrastructure for such applications. In the second part, we strive for emph{objectively} measuring the users' perception when using VoIP and gaming applications based on the network conditions the users experience. Our goal is to define a objectively assessable metric for QoS-provisioning of real-time interactive applications through the mapping from system-level performance metrics to user-level satisfaction measures.
Our main contributions are three-fold: 1) We pointed out the potential performance problems of online gaming and proposed some possible solutions; 2) We proposed to infer users' awareness of network QoS by the time they spend on a service, e.g., game playing or Internet phone. Also, we proposed and verified a user satisfaction measure for Skype, which is computed based on the network conditions users experience; 3) We proposed a number of strategies to cope with the prevalent but undesirable use of online game bots, where our methods are shown generalizable across different games and robust under counter-attacks from bot developers.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:48:10Z (GMT). No. of bitstreams: 1
ntu-95-D91921008-1.pdf: 2285269 bytes, checksum: c459268a608242ba2f037ae84914d5ce (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsContents
List of Figures ix
List of Tables xiii
1 Introduction 1
2 Background 6
2.1 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Studies of Network Game Traffic . . . . . . . . . . . . . . . . 6
2.1.2 Studies of Network Game Performance . . . . . . . . . . . . . . 7
2.1.3 Assessment of QoS-Sensitivity of Online Gamers . . . . . . . . . 7
2.1.4 Measurement of VoIP User Perception . . . . . . . . . . . . . . 8
2.1.5 Online Game Bot Prevention and Detection . . . . . . . . . . . . 9
2.2 Studied Applications . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 ShenZhou Online . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Ragnarok Online and the Bots . . . . . . . . . . . . . . . . . 12
2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Time Censorship and Survival Curve Estimation . . . . . . . . . 14
2.3.2 Logistic RegressionModeling . . . . . . . . . . . . . . . . . . 17
2.3.3 Proportional Hazards Regression Modeling . . . . . . . . . . . 17
3 Trace Collection 19
3.1 ShenZhou Online . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.1 Network Setup . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Identification of Game Sessions . . . . . . . . . . . . . . . . 21
3.1.3 Trace Summary . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Trace Representativeness . . . . . . . . . . . . . . . . . . . 24
3.2 Ragnarok Online . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Skype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Network Setup . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Capturing Skype Traffic . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Identification of VoIP Sessions . . . . . . . . . . . . . . . . 30
3.3.4 Measurement of Path Characteristics . . . . . . . . . . . . . . 31
3.3.5 Trace Summary . . . . . . . . . . . . . . . . . . . . . . . . . 32
I System-Level Performance Analysis 35
4 Game Traffic Analysis 38
4.1 Traffic Characteristics of Individual Connections . . . . . . . . 40
4.1.1 Packet Size . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Packet Load and Bandwidth Usage . . . . . . . . . . . . . . . . 41
4.1.3 Distribution of Packet Interarrival Times . . . . . . . . . . . 42
4.1.4 Temporal Dependence of Packet Interarrivals . . . . . . . . . . 44
4.1.5 Peak Rate and Burstiness . . . . . . . . . . . . . . . . . . . 47
4.2 Aggregate Traffic Characteristics . . . . . . . . . . . . . . . . 52
4.2.1 The Flash Crowd Effect . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.3 Burstiness and Self-Similarity . . . . . . . . . . . . . . . . 57
4.3 Session Characteristics . . . . . . . . . . . . . . . . . . . . . 64
4.3.1 Interarrivals . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5 Game Performance Analysis 69
5.1 TCP Behavior in Online Games . . . . . . . . . . . . . . . . . . 71
5.1.1 Protocol Overhead . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.2 In-Order Delivery . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.3 Congestion Control . . . . . . . . . . . . . . . . . . . . . . 76
5.1.4 Loss Recovery . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Design Guidelines for Game Transport
Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
II User-Level QoS Provisioning 85
6 The Impact of Network QoS on Game Player Departures 87
6.1 General Pattern of Game Player Departures . . . . . . . . . . . . 91
6.2 Day of theWeek Effect . . . . . . . . . . . . . . . . . . . . . . 92
6.3 Sensitivity of Game Playing Time to Network QoS . . . . . . . . . 93
6.4 Sensitivity of Premature Departure to Network QoS . . . . . . . . 95
6.5 Modeling Game Playing Time . . . . . . . . . . . . . . . . . . . 98
6.5.1 Proportional Hazards Check for Categorical Variables . . . . . 99
6.5.2 Functional Form Identification and Adjustment . . . . . . . . 100
6.5.3 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . 104
6.5.4 Assessment of Model Adequacy . . . . . . . . . . . . . . . . . 105
6.5.5 Model Validation and Interpretation . . . . . . . . . . . . . 106
6.6 Modeling Premature Departure Probability . . . . . . . . . . . . 108
6.6.1 Sampling of QoS Factors . . . . . . . . . . . . . . . . . . . 108
6.6.2 Predictability Analysis . . . . . . . . . . . . . . . . . . . 109
6.6.3 Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . 110
6.6.4 Assessment of the Model Adequacy . . . . . . . . . . . . . . . 111
6.6.5 Model Interpretation . . . . . . . . . . . . . . . . . . . . . 112
6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.7.1 Impact of QoS Factors . . . . . . . . . . . . . . . . . . . . 115
6.7.2 Impact of Transport Protocols . . . . . . . . . . . . . . . . 118
6.7.3 Application of Player Sensitivity to Network QoS . . . . . . . 118
6.7.4 Application of Premature Departure Prediction . . . . . . . . 120
7 Measurement of Skype User Satisfaction 121
7.1 Correlation between Call Duration and Network QoS . . . . . . . 123
7.1.1 Effect of Source Rate . . . . . . . . . . . . . . . . . . . . 123
7.1.2 Effect of Network Conditions . . . . . . . . . . . . . . . . . 125
7.2 Modeling Call Duration . . . . . . . . . . . . . . . . . . . . . 127
7.2.1 Collinearity among Factors . . . . . . . . . . . . . . . . . . 128
7.2.2 Sampling of QoS Factors . . . . . . . . . . . . . . . . . . . 129
7.2.3 Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2.4 Model Interpretation . . . . . . . . . . . . . . . . . . . . . 132
7.2.5 Proposal of User Satisfaction Index . . . . . . . . . . . . . 132
7.3 Validation of User Satisfaction Index . . . . . . . . . . . . . 133
7.3.1 Inferring Conversation Patterns . . . . . . . . . . . . . . . 134
7.3.2 Voice Interactivity Analysis . . . . . . . . . . . . . . . . . 138
7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.4.1 Impact of QoS Factors . . . . . . . . . . . . . . . . . . . . 143
7.4.2 Comparison between USI and Speech Quality Measures . . . . 144
8 Coping with Online Game Bots 146
8.1 Overview. . . . . . . . . . . . . . . . . . . . . .. . . . . . . 146
8.2 Analysis of Human Player and Bot Traffic . . . . . . . . . . . . 147
8.2.1 Regularity in Client Traffic . . . . . . . . . . . . . . . . . 148
8.2.2 Command Timing . . . . . . . . . . . . . . . . . . . . . . . . 152
8.2.3 Traffic Burstiness . . . . . . . . . . . . . . . . . . . . . . 154
8.2.4 Player Reaction to Network Conditions . . . . . . . . . . . . 159
8.3 Proposed Bot Detection Strategies . . . . . . . . . . . . . . . 161
8.3.1 Command Timing . . . . . . . . . . . . . . . . . . . . . . . . 161
8.3.2 Trend of Traffic Burstiness . . . . . . . . . . . . . . . . . 164
8.3.3 Magnitude of Traffic Burstiness . . . . . . . . . . . . . . . 164
8.3.4 Player Reaction to Network Conditions . . . . . . . . . . . . 165
8.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 167
8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.5.1 Generality of Proposed Detection Strategies . . . .. . . . . . 169
8.5.2 Robustness against Counter-Attacks . . . . . . . . . . . . . . 169
8.5.3 Server-Side Deployment . . . . . . . . . . . . . . . . . . . . 171
8.5.4 Reactive Identification . . . . . . . . . . . . . .. . . . . . 172
9 Summary 173
9.1 Contributions . . . . . . . . . . . . . . . . . . . .. . . . . . 174
9.1.1 Game Traffic Study . . . . . . . . . . . . . . . . . . . . . . 174
9.1.2 Game Performance Study . . . . . . . . . . . . . . . . . . . . 175
9.1.3 QoS-Sensitivity of Online Gamers . . . . . . . . . . . . . . . 176
9.1.4 User SatisfactionMeasurement . . . . . . . . . . . . . . . . . 177
9.1.5 Game Bot Detection . . . . . . . . . . . . . . . . . . . . . . 177
9.2 Future Research . . . . . . . . . . . . . . . . . . . .. . . . . 178
Bibliography 179
dc.language.isoen
dc.subject線上遊戲zh_TW
dc.subject網路電話zh_TW
dc.subject服務品質zh_TW
dc.subjectVoIPen
dc.subjectQoSen
dc.subjectOnline Gamesen
dc.subjectSkypeen
dc.title即時互動應用程式的服務品質提供:從網路效能到使用者滿意度zh_TW
dc.titleQoS Provisioning for Real-Time Interactive Applications: From Network Performance to User Satisfactionen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee郭斯彥(Sy-Yen Kuo),顏嗣鈞(Hsu-chun Yen),蔡志宏(Zsehong Tsai),張進福(Jin-Fu Chang),林一平(Yi-Bing Lin),何建明(Jan-Ming Ho),黃肇雄(Jau-Hsiung Huang)
dc.subject.keyword線上遊戲,網路電話,服務品質,zh_TW
dc.subject.keywordOnline Games,VoIP,Skype,QoS,en
dc.relation.page186
dc.rights.note有償授權
dc.date.accepted2006-07-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-95-1.pdf
  Restricted Access
2.23 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved