Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33562
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高振宏
dc.contributor.authorYou-Tsz Guoen
dc.contributor.author郭又慈zh_TW
dc.date.accessioned2021-06-13T04:47:29Z-
dc.date.available2011-08-05
dc.date.copyright2011-08-05
dc.date.issued2011
dc.date.submitted2011-07-26
dc.identifier.citationBernacchi, D., Beck-Bunn, T., Eshed, Y., Lopez, J., Petiard, V., Uhlig, J., Zamir, D., and Tanksley, S. (1998), “Advanced backcross qtl analysis in tomato. i. identification of qtls for traits of agronomic importance from lycopersicon hirsutum”, TAG Theoretical and Applied Genetics, 97, 381–397, 10.1007/s001220050908.
Chang, Myron N., Wu, Rongling, Wu, Samuel S., and Casella, George (2009), “Score statistics for mapping quantitative trait loci”, Statistical Applications in Genetics and Molecular Biology, 8(1).
Churchill, G. A. and Doerge, R. W. (1994), “Empirical threshold values for quantitative trait mapping”, Genetics, 138(3), 963–971.
Darvasi, A., Weinreb, A., Minke, V., Weller, J. I., and Soller, M. (1993), “Detecting marker-qtl linkage and estimating qtl gene effect and map location using a saturated genetic map”, Genetics, 134(3), 943–951.
Davies, ROBERT B. (1977), “Hypothesis testing when a nuisance parameter is present only under the alternative”, Biometrika, 64(2), 247–254.
Davies, ROBERT B. (1987), “Hypothesis testing when a nuisance parameter is present only under the alternative”, Biometrika, 74(1), 33–43.
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum likelihood from incomplete data via the em algorithm”, Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38.
Doerge, R. W. and Churchill, G. A. (1996), “Permutation tests for multiple loci affecting a quantitative character”, Genetics, 142(1), 285–294.
Geldermann, H. (1975), “Investigations on inheritance of quantitative characters in animals by gene markers i. methods”, TAG Theoretical and Applied Genetics, 46, 319–330, 10.1007/BF00281673.
Haley, C. S. and Knott, S. A. (1992), “A simple regression method for mapping quantitative trait loci in line crosses using flanking markers”, Heredity, 69, 315–324.
Jansen, R. C. (1993), “Interval mapping of multiple quantitative trait loci”, Genetics, 135(1), 205–211.
Jansen, R. C. and Stam, P. (1994), “High resolution of quantitative traits into multiple loci via interval mapping”, Genetics, 136(4), 1447–1455.
Jiang, C. and Zeng, Z. B. (1997), “Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines”, Genetica, 101, 47–58.
Kao, C. H. and Zeng, M. H. (2009), “A study on the mapping of quantitative trait loci in advanced populations derived from two inbred lines”, Genet. Res., Camb, 91, 85–99.
Kao, Chen-Hung (2004), “Multiple-interval mapping for quantitative trait loci controlling endosperm traits”, Genetics, 167(4), 1987–2002.
Kao, Chen-Hung (2006), “Mapping quantitative trait loci using the experimental designs of recombinant inbred populations”, Genetics, 174(3), 1373–1386.
Kao, Chen-Hung, Zeng, Zhao-Bang, and Teasdale, Robert D. (1999), “Multiple interval mapping for quantitative trait loci”, Genetics, 152(3), 1203–1216.
Lander, E. S. and Botstein, D. (1989), “Mapping mendelian factors underlying quantitative traits using rflp linkage maps”, Genetics, 121(1), 185–199.
Lander, ES and Schork, NJ (1994), “Genetic dissection of complex traits”, Science, 265(5181), 2037–2048.
Li, Yuling, Dong, Yongbin, Niu, Suzhenniu, Cui, Dongqun, Wang, Yanzhao, Liu, Yanyang, Wei, Mengguan, and Li, Xuehui (2008), “Identification of agronomically
favorable quantitative trait loci alleles from a dent corn inbred dan232 using advanced backcross qtl analysis and comparison with the f2:3 population in popcorn”,Molecular Breeding, 21, 1–14, 10.1007/s11032-007-9104-z.
Lynch, Michael and Walsh, Bruce (1998), Genetics and Analysis of Quantitative Traits, Sinauer Associates, Inc.
Mather, K. (1941), “Variation and selection of polygenic characters”, Journal of Genetics, 41, 159–193, 10.1007/BF02983019.
Putter, H., Sandkuijl, L.A., and van Houwelingen, J.C. (2002), “Score test for detecting linkage to quantitative traits”, Genetic Epidemiology, 22(4), 345–355.
Rebai, A., Goffinet, B., and Mangin, B. (1994), “Approximate thresholds of interval mapping tests for qtl detection”, Genetics, 138(1), 235–240.
Rebai, Ahmed, Goffinet, Bruno, and Mangin, Brigitte (1995), “Comparing power of different methods for qtl detection”, Biometrics, 51(1), pp. 87–99.
Saal, Bernhard, von Korff, Maria, Leon, Jens, and Pillen, Klaus (2011), “Advanced backcross qtl analysis in spring barley: Iv. localization of qtl × nitrogen interaction effects for yield-related traits”, Euphytica, 177, 223–239, 10.1007/s10681-010-0252-6.
Severini, Thomas Alan (2000), Likelihood methods in statistics, Oxford statistical science series, Oxford, UK: Oxford University Press.
Tanksley, SD and Nelson, JC (1996), “Advanced backcross qtl analysis: a method of the simultaneous discovery and transfer of valuable qtls from unadapted
germplasm into elite breeding lines”, Theor Appl Genet, 191–203.
van Ooijen, Johan W. (1992), “Accuracy of mapping quantitative trait loci in autogamous species”, TAG Theoretical and Applied Genetics, 84, 803–811,
10.1007/BF00227388.
Zeng, Z B (1993), “Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci”, Proceedings of the National Academy of Sciences, 90(23), 10972–10976.
Zeng, Z. B. (1994), “Precision mapping of quantitative trait loci”, Genetics, 136(4), 1457–1468.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33562-
dc.description.abstract數量性狀基因座(quantitative trait loci, QTL)區間定位法的統計模式一般是混合常態模型。在偵測QTL時,我們使用概度比檢定統計量來檢定整個基因組的每一個位置上是否有QTL存在,其虛無假設為QTL不存在,而具有顯著最大概度比檢定統計量之位置即為QTL的估計位置。在這樣的框架之下,決定偵測QTL時所宣稱之顯著性的門檻值,在QTL定位上是一個非常重要且具有挑戰性的議題。目前為止,有關決定門檻值的研究大多在回交族群及F2世代中進行。在實際的植物和動物育種研究裡,回交及F2世代的進階族群也很常被使用,而這些族群有很不同的基因組結構。在這項研究中,我們使用score檢定統計量和高斯隨機過程來取得進階回交族群之門檻值,並研究他們在進階回交族群之QTL定位時的行為。使用此方法我們需要考慮這些進階族群的特定基因組結構,因此我們推導出三個基因及四個基因的傳遞方程式(transition equations)來計算得到基因型分佈,並將這些基因型頻率帶入score檢定統計量和高斯隨機過程的公式,來計算取得不同族群大致的QTL定位門檻值。進行模擬來印證我們的方法。zh_TW
dc.description.abstractThe statistical model of interval mapping for QTL (quantitative trait loci) detection is generally a normal mixture model. In detecting QTL, typically the presence of a QTL, i.e. the null hypothesis of no QTL, is tested over the all possible positions in the whole genome by using likelihood ratio test (LRT) statistics and the position with the maximum significant LRT statistic is regarded as the estimated QTL position. Under such a framework, the determination of the threshold values for declaring the significance of QTL detection has been recognized as a very important and challenging issue in QTL mapping. So far, most of the studies related to determining the threshold values are performed for the backcross and F$_2$ populations. In practical plant and animal breeding studies, advanced populations from backcross or F2 populations, which can have very different genome structures, are also very popular. In this study, we use score test statistics and Gaussian stochastic process to obtain the threshold values and investigate their behaviors for QTL mapping in the advanced backcross populations. To consider the specific genome structures of the advanced populations in the approach,
we derive the sets of transition equations to obtain the genotypic distributions of three and four genes and devise these genotypic frequencies into the formulations of the score test statistics and Gaussian processes to compute the approximate threshold values for different populations.
Simulation studies are performed to verify our approach.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:47:29Z (GMT). No. of bitstreams: 1
ntu-100-R98621206-1.pdf: 8442651 bytes, checksum: 8aa61f73f1f221718b4cd48d0919173b (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsThesis Oral Examination Committee Members Approval Sheet i
Abstract ii
Abstract (in Chinese) iv
1 Introduction 1
2 Population Structures 6
3 Score test statistics 15
3.1 Interval Mapping 15
3.2 Hypothesis Testing 17
3.3 Score test statistics 18
3.4 Asymptotic distribution of score test statistics 20
4 Gaussian stochastic process 23
5 Simulation of the Null Distribution 27
6 Simulation Results 30
7 Conclusion and Disscussion 32
8 R code 35
Appendix 48
A The transition equations 48
A.1 Four loci 48
B The approximate mothod 51
B.1 Three loci 51
B.2 Four loci 51
References 53
dc.language.isoen
dc.subject數量性狀基因座zh_TW
dc.subjectscore檢定zh_TW
dc.subject進階回交族群zh_TW
dc.subject區間定位法zh_TW
dc.subject高斯隨機過程zh_TW
dc.subjectGaussian stochastic processen
dc.subjectadvanced backcross popultionsen
dc.subjectinterval mappingen
dc.subjectQTLen
dc.subjectscore testen
dc.title進階回交族群之數量性狀基因座定位門檻值研究zh_TW
dc.titleA study of assessing genome-wise statistical significance for QTL mapping in the advanced backcross populationsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor廖振鐸
dc.contributor.oralexamcommittee蔡風順
dc.subject.keyword數量性狀基因座,區間定位法,進階回交族群,score檢定,高斯隨機過程,zh_TW
dc.subject.keywordQTL,interval mapping,advanced backcross popultions,score test,Gaussian stochastic process,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2011-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
8.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved