Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33559
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝旭亮
dc.contributor.authorMing-Jung Liuen
dc.contributor.author劉明容zh_TW
dc.date.accessioned2021-06-13T04:47:18Z-
dc.date.available2008-07-21
dc.date.copyright2006-07-21
dc.date.issued2006
dc.date.submitted2006-07-17
dc.identifier.citationAgrawal, G.K., Jwa, N.S., Iwahashi, H., and Rakwal, R. (2003). Importance
of ascorbate peroxidases OsAPX1 and OsAPX2 in the rice pathogen
response pathways and growth and reproduction revealed by their
transcriptional profiling. Gene 322, 93-103
Alfenito, M.R., Souer, E., Goodman, C.D., Buell, R., Mol, J., Koes, R., and
Walbot, V. (1998). Functional complementation of anthocyanin sequestration
in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10,
1135-1149.
Allen, G.J., Kuchitsu, K., Chu, S.P., Murata, Y., and Schroeder, J.I. (1999).
Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic
acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 11,
1785-1798.
Ang, L.H., Chattopadhyay, S., Wei, N., Oyama, T., Okada, K., Batschauer,
A., and Deng, X.W. (1998). Molecular interaction between COP1 and HY5
defines a regulatory switch for light control of Arabidopsis development. Mol
Cell 1, 213-222.
Aukerman, M.J., Hirschfeld, M., Wester, L., Weaver, M., Clack, T.,
Amasino, R.M., and Sharrock, R.A. (1997). A deletion in the PHYD gene of
the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in
red/far-red light sensing. Plant Cell 9, 1317-1326.
Ballesteros, M.L., Bolle, C., Lois, L.M., Moore, J.M., Vielle-Calzada, J.P.,
Grossniklaus, U., and Chua, N.H. (2001). LAF1, a MYB transcription
activator for phytochrome A signaling. Genes Dev 15, 2613-2625.
Barnes, S.A., Quaggio, R.B., Whitelam, G.C., and Chua, N.H. (1996a). fhy1
defines a branch point in phytochrome A signal transduction pathways for
gene expression. Plant J 10, 1155-1161.
Barnes, S.A., Nishizawa, N.K., Quaggio, R.B., Whitelam, G.C., and Chua,
N.H. (1996b). Far-red light blocks greening of Arabidopsis seedlings via a
phytochrome A-mediated change in plastid development. Plant Cell 8,
601-615.
Bartling, D., Radzio, R., Steiner, U., and Weiler, E.W. (1993). A glutathione
S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana.
Molecular cloning and functional characterization. Eur J Biochem 216,
579-586.
Benvenuto, G., Formiggini, F., Laflamme, P., Malakhov, M., and Bowler, C.
(2002). The photomorphogenesis regulator DET1 binds the amino-terminal
tail of histone H2B in a nucleosome context. Curr Biol 12, 1529-1534.
Bilang, J., and Sturm, A. (1995). Cloning and characterization of a
glutathione S-transferase that can be photolabeled with
5-azido-indole-3-acetic acid. Plant Physiol 109, 253-260.
Boccalandro, H.E., Mazza, C.A., Mazzella, M.A., Casal, J.J., and Ballare,
C.L. (2001). Ultraviolet B radiation enhances a phytochrome-B-mediated
photomorphogenic response in Arabidopsis. Plant Physiol 126, 780-788.
Bolle, C., Koncz, C., and Chua, N.H. (2000). PAT1, a new member of the
GRAS family, is involved in phytochrome A signal transduction. Genes Dev
14, 1269-1278.
Buche, C., Poppe, C., Schafer, E., and Kretsch, T. (2000). eid1: a new
Arabidopsis mutant hypersensitive in phytochrome A-dependent
high-irradiance responses. Plant Cell 12, 547-558.
Butler, W.L., Lane, H.C, Siegelman, H.W. (1963). Nonphotochemical
transformation of phytochrome in vivo. Plant Physiol 38, 514–519.
Butler, W.L., Norris, K.H, Siegelman, H.W, and Hendricks, S.B. (1959).
Detection, assay, and preliminary purification of the pigment controlling
photoresponsive development of plants. Proc Natl Acad Sci USA 45,
1703–1708.
Cerdan, P.D., and Chory, J. (2003). Regulation of flowering time by light
quality. Nature 423, 881-885.
Chattopadhyay, S., Ang, L.H., Puente, P., Deng, X.W., and Wei, N. (1998).
Arabidopsis bZIP protein HY5 directly interacts with light-responsive
promoters in mediating light control of gene expression. Plant Cell 10,
673-683.
Chen, W., Chao, G., and Singh, K.B. (1996). The promoter of a
H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely
linked OBF- and OBP1-binding sites. Plant J 10, 955-966.
Choi, G., Yi, H., Lee, J., Kwon, Y.K., Soh, M.S., Shin, B., Luka, Z., Hahn,
T.R., and Song, P.S. (1999). Phytochrome signalling is mediated through
nucleoside diphosphate kinase 2. Nature 401, 610-613.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for
Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16,
735-743.
Cobbett, C.S., May, M.J., Howden, R., and Rolls, B. (1998). The
glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana
is deficient in gamma-glutamylcysteine synthetase. Plant J 16, 73-78.
Cole, S.P., Downes, H.F., Mirski, S.E., and Clements, D.J. (1990).
Alterations in glutathione and glutathione-related enzymes in a
multidrug-resistant small cell lung cancer cell line. Mol Pharmacol 37,
192-197.
Cummins, I., Cole, D.J., and Edwards, R. (1999). A role for glutathione
transferases functioning as glutathione peroxidases in resistance to multiple
herbicides in black-grass. Plant J 18, 285-292.
DeRidder, B.P., Dixon, D.P., Beussman, D.J., Edwards, R., and
Goldsbrough, P.B. (2002). Induction of glutathione S-transferases in
Arabidopsis by herbicide safeners. Plant Physiol 130, 1497-1505.
Deng, X.W., Matsui, M., Wei, N., Wagner, D., Chu, A.M., Feldmann, K.A., and
Quail, P.H. (1992). COP1, an Arabidopsis regulatory gene, encodes a protein with
both a zinc-binding motif and a G beta homologous domain. Cell 71, 791-801.
Dixon, D.P., Cole, D.J., and Edwards, R. (2000). Characterisation of a zeta
class glutathione transferase from Arabidopsis thaliana with a putative role in
tyrosine catabolism. Arch Biochem Biophys 384, 407-412.
Dixon, D.P., Davis, B.G., and Edwards, R. (2002a). Functional divergence in
the glutathione transferase superfamily in plants. Identification of two classes
with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol
Chem 277, 30859-30869.
Dixon, D.P., Lapthorn, A., and Edwards, R. (2002b). Plant glutathione
transferases. Genome Biol 3, REVIEWS3004.
Dixon, D.P., Cummins, L., Cole, D.J., and Edwards, R. (1998).
Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol 1,
258-266.
Fankhauser, C., and Chory, J. (1997). Light control of plant development.
Annu Rev Cell Dev Biol 13, 203-229.
Feinbaum, R.L., and Ausubel, F.M. (1988). Transcriptional regulation of the
Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol 8, 1985-1992.
Fellner, M., and Sawhney, V.K. (2002). The 7B-1 mutant in tomato shows
blue-light-specific resistance to osmotic stress and abscisic acid. Planta 214,
675-682.
Fellner, M., Zhang, R., Pharis, R.P., and Sawhney, V.K. (2001). Reduced
de-etiolation of hypocotyl growth in a tomato mutant is associated with
hypersensitivity to, and high endogenous levels of, abscisic acid. J Exp Bot 52, 725-738.
Fernandez-Canon, J.M., and Penalva, M.A. (1998). Characterization of a
fungal maleylacetoacetate isomerase gene and identification of its human
homologue. J Biol Chem 273, 329-337.
Finkelstein, R.R., and Somerville, C.R. (1990). Three Classes of Abscisic
Acid (ABA)-Insensitive Mutations of Arabidopsis Define Genes that Control
Overlapping Subsets of ABA Responses. Plant Physiol 94, 1172-1179.
Fankhauser, C., Yeh, K.C., Lagarias, J.C., Zhang, H., Elich, T.D., and Chory, J.
(1999). PKS1, a substrate phosphorylated by phytochrome that modulates light
signaling in Arabidopsis. Science 284, 1539-1541.
Franklin, K.A., Davis, S.J., Stoddart, W.M., Vierstra, R.D., and Whitelam,
G.C. (2003). Mutant analyses define multiple roles for phytochrome C in
Arabidopsis photomorphogenesis. Plant Cell 15, 1981-1989.
Frear, D.S., Swanson, H.R. (1970). Biosynthesis of
S-(4-ethylamino-6-isopropylamino-2-s-triazine) glutathione: partial purification
and properties of glutathione S-transferase from corn. Phytochemistry 9,
2123–2132.
Frova, N., Sari Gorla, M., Mizzi, L., De Toma, G., and Frova, C. (2004).
Organisation and structural evolution of the rice glutathione S-transferase
gene family. Mol Genet Genomics 271, 511-521.
Fukuda, A., Okada, Y., Suzui, N., Fujiwara, T., Yoneyama, T., and Hayashi,
H. (2004). Cloning and characterization of the gene for a phloem-specific
glutathione S-transferase from rice leaves. Physiol Plant 120, 595-602.
Fuller, M.T., Regan, C.L., Green, L.L., Robertson, B., Deuring, R., and Hays,
T.S. (1989). Interacting genes identify interacting proteins involved in microtubule
function in Drosophila. Cell Motil Cytoskeleton 14, 128-135.
Garner, W.W., and Allard, H.A. (1920). Effect of the relative length of day and
night and other factors of the environment on growth and reproduction in
plants. J. Agric. Res, 553–606, 553-606.
Ghassemian, M., Nambara, E., Cutler, S., Kawaide, H., Kamiya, Y., and
McCourt, P. (2000). Regulation of abscisic acid signaling by the ethylene
response pathway in Arabidopsis. Plant Cell 12, 1117-1126.
Gilmour, S.J., and Thomashow, M.F. (1991). Cold acclimation and
cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant
Mol Biol 17, 1233-1240.
Gong, H., Jiao, Y., Hu, W.W., and Pua, E.C. (2005). Expression of
glutathione-S-transferase and its role in plant growth and development in vivo
and shoot morphogenesis in vitro. Plant Mol Biol 57, 53-66.
Gonneau, J., Mornet, R., Laloue M. (1998). A Nicotiana plumbaginifolia
protein labeled with an azido cytokinin agonist is a glutathione S-transferase.
Physiol Plant 103, 114-124.
Goosey, L., Palecanda, L., and Sharrock, R.A. (1997). Differential patterns
of expression of the Arabidopsis PHYB, PHYD, and PHYE phytochrome
genes. Plant Physiol 115, 959-969.
Gronwald, J.W., and Plaisance, K.L. (1998). Isolation and characterization of
glutathione S-transferase isozymes from sorghum. Plant Physiol 117,
877-892.
Guo, H., Mockler, T., Duong, H., and Lin, C. (2001). SUB1, an Arabidopsis
Ca2+-binding protein involved in cryptochrome and phytochrome coaction.
Science 291, 487-490.
Habig, W.H., Pabst, M.J., and Jakoby, W.B. (1974). Glutathione
S-transferases. The first enzymatic step in mercapturic acid formation. J Biol
Chem 249, 7130-7139.
Hardtke, C.S., Gohda, K., Osterlund, M.T., Oyama, T., Okada, K., and
Deng, X.W. (2000). HY5 stability and activity in arabidopsis is regulated by
phosphorylation in its COP1 binding domain. Embo J 19, 4997-5006.
Hennig, L., Stoddart, W.M., Dieterle, M., Whitelam, G.C., and Schafer, E.
(2002). Phytochrome E controls light-induced germination of Arabidopsis.
Plant Physiol 128, 194-200.
Hirschfeld, M., Tepperman, J.M., Clack, T., Quail, P.H., and Sharrock, R.A.
(1998). Coordination of phytochrome levels in phyB mutants of Arabidopsis
as revealed by apoprotein-specific monoclonal antibodies. Genetics 149,
523-535.
Hoecker, U., Xu, Y., and Quail, P.H. (1998). SPA1: a new genetic locus
involved in phytochrome A-specific signal transduction. Plant Cell 10, 19-33.
Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, H.,
and Deng, X.W. (2000). FIN219, an auxin-regulated gene, defines a link
between phytochrome A and the downstream regulator COP1 in light control
of Arabidopsis development. Genes Dev 14, 1958-1970.
Hsieh, H.L., Tong, C.G., Thomas, C. and Roux, S.J. (1996). Light-regulated
mRNA abundance of a gene encoding a calmodulin-regulated,
chromatin-associated NTPase in pea. Plant Mol. Biol. 30, 135-148.
Hudson, M., Ringli, C., Boylan, M.T., and Quail, P.H. (1999). The FAR1 locus
encodes a novel nuclear protein specific to phytochrome A signaling. Genes
Dev 13, 2017-2027.
Hudson, M.E. (2000). The genetics of phytochrome signalling in Arabidopsis.
Semin Cell Dev Biol 11, 475-483.
Huq, E., and Quail, P.H. (2002). PIF4, a phytochrome-interacting bHLH factor,
functions as a negative regulator of phytochrome B signaling in Arabidopsis.
Embo J 21, 2441-2450.
Huq, E., Tepperman, J.M., and Quail, P.H. (2000). GIGANTEA is a nuclear
protein involved in phytochrome signaling in Arabidopsis. Proc Natl Acad Sci
U S A 97, 9789-9794.
Huq, E., Al-Sady, B., Hudson, M., Kim, C., Apel, K., and Quail, P.H. (2004).
Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll
biosynthesis. Science 305, 1937-1941.
Irzyk, G., Potter, S., Ward, E., and Fuerst, E.P. (1995). A cDNA clone
encoding the 27-kilodalton subunits of glutathione S-transferase IV from Zea
mays. Plant Physiol 107, 311-312.
June M. Kwak, V.N., and Julian I. Schroeder. (2006). The Role of Reactive
Oxygen Species in Hormonal Responses. Plant Physiology 141, 323-329.
Kaczorowski, K.A., and Quail, P.H. (2003). Arabidopsis
PSEUDO-RESPONSE REGULATOR7 is a signaling intermediate in
phytochrome-regulated seedling deetiolation and phasing of the circadian
clock. Plant Cell 15, 2654-2665.
Kendrick, R.E., and Kronenberg, G.H.M. (1994). Photomorphogenesis in
Plants.
Ketley, J.N., Habig, W.H., and Jakoby, W.B. (1975). Binding of non substrate
ligands to the glutathione S-transferases. J Biol Chem 250, 8670–8673.
Kim, J., Yi, H., Choi, G., Shin, B., Song, P.S., and Choi, G. (2003). Functional
characterization of phytochrome interacting factor 3 in phytochrome-mediated
light signal transduction. Plant Cell 15, 2399-2407.
Koornneef, M., Hanhart, C.J., Hilhorst, H.W., and Karssen, C.M. (1989). In
Vivo Inhibition of Seed Development and Reserve Protein Accumulation in
Recombinants of Abscisic Acid Biosynthesis and Responsiveness Mutants in
Arabidopsis thaliana. Plant Physiol 90, 463-469.
Lagarias, J.C., and Lagarias, D.M. (1989). Self-assembly of synthetic
phytochrome holoprotein in vitro. Proc Natl Acad Sci U S A 86, 5778-5780.
Lang, V., and Palva, E.T. (1992). The expression of a rab-related gene, rab18,
is induced by abscisic acid during the cold acclimation process of Arabidopsis
thaliana (L.) Heynh. Plant Mol Biol 20, 951-962.
Leung, J., Merlot, S., and Giraudat, J. (1997). The Arabidopsis ABSCISIC
ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein
phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9,
759-771.
Levine, A., Tenhaken, R., Dixon, R., and Lamb, C. (1994). H2O2 from the
oxidative burst orchestrates the plant hypersensitive disease resistance
response. Cell 79, 583-593.
Li, Z.S., Alfenito, M., Rea, P.A., Walbot, V., and Dixon, R.A. (1997). Vacuolar
uptake of the phytoalexin medicarpin by the glutathione conjugate pump.
Phytochemistry 45, 689-693.
Lorenzo, O., Chico, J.M., Sanchez-Serrano, J.J., and Solano, R. (2004).
JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential
to discriminate between different jasmonate-regulated defense responses in
Arabidopsis. Plant Cell 16, 1938-1950.
Loyall, L., Uchida, K., Braun, S., Furuya, M., and Frohnmeyer, H. (2000).
Glutathione and a UV light-induced glutathione S-transferase are involved in
signaling to chalcone synthase in cell cultures. Plant Cell 12, 1939-1950.
Makino, S., Matsushika, A., Kojima, M., Yamashino, T., and Mizuno, T.
(2002). The APRR1/TOC1 quintet implicated in circadian rhythms of
Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants.
Plant Cell Physiol 43, 58-69.
Marrs, K.A. (1996). The Functions And Regulation Of Glutathione
S-Transferases In Plants. Annu Rev Plant Physiol Plant Mol Biol 47, 127-158.
McNellis, T.W., von Arnim, A.G., and Deng, X.W. (1994). Overexpression of
Arabidopsis COP1 results in partial suppression of light-mediated
development: evidence for a light-inactivable repressor of
photomorphogenesis. Plant Cell 6, 1391-1400.
Meinhard, M., and Grill, E. (2001). Hydrogen peroxide is a regulator of ABI1,
a protein phosphatase 2C from Arabidopsis. FEBS Lett 508, 443-446.
Meinhard, M., Rodriguez, P.L., and Grill, E. (2002). The sensitivity of ABI2 to
hydrogen peroxide links the abscisic acid-response regulator to redox
signalling. Planta 214, 775-782.
Monte, E., Alonso, J.M., Ecker, J.R., Zhang, Y., Li, X., Young, J.,
Austin-Phillips, S., and Quail, P.H. (2003). Isolation and characterization of
phyC mutants in Arabidopsis reveals complex crosstalk between
phytochrome signaling pathways. Plant Cell 15, 1962-1980.
Moons, A. (2005). Regulatory and Functional Interactions of Plant Growth
Regulators and Plant Glutathione S-Transferases (GSTs). Vitamins &
Hormones 72, 155-202.
Mueller, L.A., Goodman, C.D., Silady, R.A., and Walbot, V. (2000). AN9, a
petunia glutathione S-transferase required for anthocyanin sequestration, is a
flavonoid-binding protein. Plant Physiol 123, 1561-1570.
Nagy, F., Kircher, S., and Schafer, E. (2000). Nucleo-cytoplasmic partitioning
of the plant photoreceptors phytochromes. Semin Cell Dev Biol 11, 505-510.
Ni, M., Tepperman, J.M., and Quail, P.H. (1998). PIF3, a
phytochrome-interacting factor necessary for normal photoinduced signal
transduction, is a novel basic helix-loop-helix protein. Cell 95, 657-667.
Ogawa, K., Hatano-Iwasaki, A., Yanagida, M., and Iwabuchi, M. (2004).
Level of glutathione is regulated by ATP-dependent ligation of glutamate and
cysteine through photosynthesis in Arabidopsis thaliana: mechanism of
strong interaction of light intensity with flowering. Plant Cell Physiol 45, 1-8.
Ogawa, K., Tasaka, Y., Mino, M., Tanaka, Y., and Iwabuchi, M. (2001).
Association of glutathione with flowering in Arabidopsis thaliana. Plant Cell
Physiol 42, 524-530.
Ooms, J., Leon-Kloosterziel, K.M., Bartels, D., Koornneef, M., and
Karssen, C.M. (1993). Acquisition of Desiccation Tolerance and Longevity in
Seeds of Arabidopsis thaliana (A Comparative Study Using Abscisic
Acid-Insensitive abi3 Mutants). Plant Physiol 102, 1185-1191.
Oono, Y., Ooura, C., and Uchimiya, H. (2002). Expression pattern of Aux/IAA
genes in the iaa3/shy2-1D mutant of Arabidopsis thaliana (L.). Ann Bot (Lond)
89, 77-82.
Oyama, T., Shimura, Y., and Okada, K. (1997). The Arabidopsis HY5 gene
encodes a bZIP protein that regulates stimulus-induced development of root
and hypocotyl. Genes Dev 11, 2983-2995.
Pandey, G.K., Grant, J.J., Cheong, Y.H., Kim, B.G., Li, L., and Luan, S.
(2005). ABR1, an APETALA2-domain transcription factor that functions as a
repressor of ABA response in Arabidopsis. Plant Physiol 139, 1185-1193.
Parcy, F., Valon, C., Raynal, M., Gaubier-Comella, P., Delseny, M., and
Giraudat, J. (1994). Regulation of gene expression programs during
Arabidopsis seed development: roles of the ABI3 locus and of endogenous
abscisic acid. Plant Cell 6, 1567-1582.
Park, D.H., Lim, P.O., Kim, J.S., Cho, D.S., Hong, S.H., and Nam, H.G.
(2003). The Arabidopsis COG1 gene encodes a Dof domain transcription
factor and negatively regulates phytochrome signaling. Plant J 34, 161-171.
Pei, Z.M., Ghassemian, M., Kwak, C.M., McCourt, P., and Schroeder, J.I.
(1998). Role of farnesyltransferase in ABA regulation of guard cell anion
channels and plant water loss. Science 282, 287-290.
Plesniak, L.A. (2005). Activity and Kinetic Analysis of GST.
Polidoros, A.N.a.S., J.G. (1999). Role of hydrogen peroxide and different
classes of antioxidants in the regulation of catalase and glutathione
S-transferase gene expression in maize (Zea mays L.). Physiol. Plant. 106,
112-120.
Qin, M., Kuhn, R., Moran, S., and Quail, P.H. (1997). Overexpressed
phytochrome C has similar photosensory specificity to phytochrome B but a
distinctive capacity to enhance primary leaf expansion. Plant J 12, 1163-1172.
Quail, P.H. (2002). Phytochrome photosensory signalling networks. Nat Rev
Mol Cell Biol 3, 85-93.
Rohde, A., De Rycke, R., Beeckman, T., Engler, G., Van Montagu, M., and
Boerjan, W. (2000). ABI3 affects plastid differentiation in dark-grown
Arabidopsis seedlings. Plant Cell 12, 35-52.
Roxas, V.P., Smith, R.K., Jr., Allen, E.R., and Allen, R.D. (1997).
Overexpression of glutathione S-transferase/glutathione peroxidase
enhances the growth of transgenic tobacco seedlings during stress. Nat
Biotechnol 15, 988-991.
Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J., and Estelle, M.
(1998). The TIR1 protein of Arabidopsis functions in auxin response and is
related to human SKP2 and yeast grr1p. Genes Dev 12, 198-207.
Sharrock, R.A., and Quail, P.H. (1989). Novel phytochrome sequences in
Arabidopsis thaliana: structure, evolution, and differential expression of a
plant regulatory photoreceptor family. Genes Dev 3, 1745-1757.
Shinomura, T., Uchida, K., and Furuya, M. (2000). Elementary processes of
photoperception by phytochrome A for high-irradiance response of hypocotyl
elongation in Arabidopsis. Plant Physiol 122, 147-156.
Smith, A.P., Nourizadeh, S.D., Peer, W.A., Xu, J., Bandyopadhyay, A.,
Murphy, A.S., and Goldsbrough, P.B. (2003). Arabidopsis AtGSTF2 is
regulated by ethylene and auxin, and encodes a glutathione S-transferase
that interacts with flavonoids. Plant J 36, 433-442.
Smith, H. (2000). Phytochromes and light signal perception by plants--an
emerging synthesis. Nature 407, 585-591.
Somers, D.E., and Quail, P.H. (1995). Temporal and spatial expression
patterns of PHYA and PHYB genes in Arabidopsis. Plant J 7, 413-427.
Somers, D.E., Kim, W.Y., and Geng, R. (2004). The F-box protein ZEITLUPE
confers dosage-dependent control on the circadian clock,
photomorphogenesis, and flowering time. Plant Cell 16, 769-782.
Staiger, D., Allenbach, L., Salathia, N., Fiechter, V., Davis, S.J., Millar, A.J.,
Chory, J., and Fankhauser, C. (2003). The Arabidopsis SRR1 gene
mediates phyB signaling and is required for normal circadian clock function.
Genes Dev 17, 256-268.
Staswick, P.E., Su, W., and Howell, S.H. (1992). Methyl jasmonate inhibition
of root growth and induction of a leaf protein are decreased in an Arabidopsis
thaliana mutant. Proc Natl Acad Sci U S A 89, 6837-6840.
Swain, T. (1986). The evolution of flavonoids. Prog Clin Biol Res 213, 1-14.
Sweere, U., Eichenberg, K., Lohrmann, J., Mira-Rodado, V., Baurle, I.,
Kudla, J., Nagy, F., Schafer, E., and Harter, K. (2001). Interaction of the
response regulator ARR4 with phytochrome B in modulating red light
signaling. Science 294, 1108-1111.
Takase, T., Nakazawa, M., Ishikawa, A., Kawashima, M., Ichikawa, T.,
Takahashi, N., Shimada, H., Manabe, K., and Matsui, M. (2004). ydk1-D,
an auxin-responsive GH3 mutant that is involved in hypocotyl and root
elongation. Plant J 37, 471-483.
Takase, T., Nakazawa, M., Ishikawa, A., Manabe, K., and Matsui, M. (2003).
DFL2, a new member of the Arabidopsis GH3 gene family, is involved in red
light-specific hypocotyl elongation. Plant Cell Physiol 44, 1071-1080.
Tepperman, J.M., Zhu, T., Chang, H.S., Wang, X., and Quail, P.H. (2001).
Multiple transcription-factor genes are early targets of phytochrome A
signaling. Proc Natl Acad Sci U S A 98, 9437-9442.
van der Kop, D.A.M., Schuyer, M., Scheres, B., van der Zaal, B.J. and
Hooykaas, P.J.J. (1996). Isolation and characterization of an auxin-inducible
glutathione S-transferase gene of Arabidopsis thaliana. Plant Mol. Biol. 30,
839-844.
von Arnim, A.G., Osterlund, M.T., Kwok, S.F., and Deng, X.W. (1997).
Genetic and developmental control of nuclear accumulation of COP1, a
repressor of photomorphogenesis in Arabidopsis. Plant Physiol 114, 779-788.
Wagner, U., Edwards, R., Dixon, D.P., and Mauch, F. (2002). Probing the
diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol
Biol 49, 515-532.
Wang, H., Ma, L., Habashi, J., Li, J., Zhao, H., and Deng, X.W. (2002).
Analysis of far-red light-regulated genome expression profiles of
phytochrome A pathway mutants in Arabidopsis. Plant J 32, 723-733.
Weatherwax, S.C., Ong, M.S., Degenhardt, J., Bray, E.A., and, and Tobin,
E.M. (1996). The interaction of light and abscisic acid in the regulation of plant
gene expression. Plant Physiol. 111, 363-370.
Wei, Z., Chris, Curtin., Mami, Kikuchi., and Chris Franco. (2002).
Integration of jasmonic acid and light irradiation for enhancement of
anthocyanin biosynthesis in Vitis inifera suspension cultures. Plant Science
162, 459-468.
Wilce, M.C., and Parker, M.W. (1994). Structure and function of glutathione
S-transferases. Biochim Biophys Acta 1205, 1-18.
Williams, S.A., Weatherwax, S.C., Bray, E.A., and Tobin, E.M. (1994). A
gene which is negatively regulated by phytochrome action in Lemna gibba
can also be positively regulated by abscisic acid. Plant Physiol. 105, 949-954.
Wittstock, U., and Halkier, B.A. (2002). Glucosinolate research in the
Arabidopsis era. Trends Plant Sci 7, 263-270.
Yamaguchi-Shinozaki, K., and Shinozaki, K. (1993). The plant hormone
abscisic acid mediates the drought-induced expression but not the
seed-specific expression of rd22, a gene responsive to dehydration stress in
Arabidopsis thaliana. Mol Gen Genet 238, 17-25.
Yanovsky, M.J., Whitelam, G.C., and Casal, J.J. (2000). fhy3-1 retains
inductive responses of phytochrome A. Plant Physiol 123, 235-242.
Yeh, K.C., and Lagarias, J.C. (1998). Eukaryotic phytochromes: light-regulated
serine/threonine protein kinases with histidine kinase ancestry.
Proc Natl Acad Sci U S A 95, 13976-13981.
Yeh, K.C., Wu, S.H., Murphy, J.T., and Lagarias, J.C. (1997). A cyanobacterial
phytochrome two-component light sensory system. Science 277, 1505-1508.
Zagotta, M.T., Hicks, K.A., Jacobs, C.I., Young, J.C., Hangarter, R.P., and
Meeks-Wagner, D.R. (1996). The Arabidopsis ELF3 gene regulates
vegetative photomorphogenesis and the photoperiodic induction of flowering.
Plant J 10, 691-702.
Zettl, R., Schell, J., and Palme, K. (1994). Photoaffinity labeling of
Arabidopsis thaliana plasma membrane vesicles by
5-azido-[7-3H]indole-3-acetic acid: identification of a glutathione
S-transferase. Proc Natl Acad Sci U S A 91, 689-693.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33559-
dc.description.abstract植物多為固著生長,行光合作用,因此因應外界光線環境的改變,而調整自
身的生長與發育能力,對植物尤其重要。在阿拉伯芥中,光敏素 A是負責感受光環境中的遠紅光,並透過一連串的訊息傳遞而影響下游的基因表現,而使植物的光型態(photomorphogenesis)發生。FIN219是一個已被證實參與在遠紅光訊息傳遞上游因子(Hsieh et al., 2000)。一個產生GST(glutathione S-transferases)蛋白質基因FIP1(FIN219-interacting protein 1),它所產生的蛋白質被證實可與FIN219的C端作用 (黃怡靜論文,2003)。然而,Tepperman et al.(2001)利用microarry方式也檢測到一個GST(AtGSTU17)可受到遠紅光的誘導,但此mRNA表現量的增加受到光敏素A突變體的抑制。因此,是否部分GST基因家族成員參與光訊息傳遞與植物生長與發育,乃是個有趣的研究主題。
利用phyA,fin219突變體進行RT-PCR與Northern blotting分析發現,AtGSTU17在遠紅光下的表現確實受到phyA與fin219突變的抑制。其mRNA的表現亦隨著光照時間越長,基因表現越強,在遠紅光照射六個小時,基因表現達到最高峰;且隨著遠紅光強度越強,AtGSTU17也表現越強。此結果顯示AtGSTU17的表現與遠紅光光照有密切的關係。將AtGSTU17由阿拉伯芥中釣取出,將其轉入大腸桿菌中,純化出的AtGSTU17蛋白質,是具有GST酵素活性,證實AtGSTU17的確是一個GST,且具有受光調控的功能。
大量表現AtGSTU17在野生型阿拉伯芥中,遠紅光中生長的轉殖株幼苗,會有比野生型更短的下胚軸長度,其葉綠素、花青素的累積會受到影響;從ABRC獲得的T-DNA 插入品系,在遠紅光下的突變株幼苗,會有比野生型更長的下胚軸外表型,開花時間有延遲的現象;其葉綠素、花青素的累積也會受到影響,與大量表現AtGSTU17的轉殖株幼苗具有相反的外表型,由此可知AtGSTU17是參與在遠紅光下的光型態發生。除此之外,利用AtGSTU17的啟動子與GUS的轉錄融合體來探討AtGSTU17基因的表現機制。結果顯示在黑暗、遠紅光、藍光、紅光下生長四天大的植株,主要皆表現在維管束組織,三十天大的植株GUS表現在花柱、雄蕊、花萼、花瓣的維管束及種子柄,顯示ATGSTU17可能作用在此部位進而影響植物生長與發育。利用突變株雜交測試,初步由F1世代在遠紅光下有長下胚軸外表型,且比個別突變株在heterozygote時的下胚軸長,顯示PHYA與ATGSTU17兩者之間具有非等位非互補(nonallelic-noncomplementation)的遺傳調控關係,可能共同參與在訊息傳遞路徑。
此外,Northern blotting分析發現AtGSTU17在白光下的表現會受到離層酸、生長素2,4-D與茉莉侗酸(jasmonic acid)的誘導;且在ABA抑制根生長實驗中,T-DNA突變株展現一個比野生型還不敏感的外表型。
綜合上述結果顯示AtGSTU17是個GST基因家族成員,它的表現會受到PHYA與不同賀爾蒙的調控,以及光強度的影響,並且會影響植物在遠紅光下的光型態發生及賀爾蒙控制的根的延長。
zh_TW
dc.description.abstractPrevious studies have shown that a glutathione S-transferase (GST), a tau class member of the GST gene family in Arabidopsis, can interact with the C-terminus of FIN219 that functions as a positive regulator of phytochrome A (phyA)-mediated far-red (FR) light signaling. Tepperman et al. (2001) reported that a GST (AtGSTU17) mRNA expression was induced rapidly in wild type under FR light, but abolished in the phyA mutant.
To further investigate whether some GST members will be involved in photomorphogenesis, we analyzed the AtGSTU17 transcript under FR condition. Northern blotting analyses showed that AtGSTU17 expression was indeed induced by FR and regulated by PHYA. Moreover, its expression was light intensity-dependent. Purified recombinant protein AtGSTU17 also showed GST activities with both substrates glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB). Furthermore, transgenic seedlings overexpressing AtGSTU17 exhibited a hypersensitive phenotype under FR, whereas the knock-out mutant of AtGSTU17 (atgstu17) showed a longer hypocotyl phenotype compared to wild type. In addition, transgenic seedlings overexpressing or inhibiting AtGSTU17 expression also affected FR-mediated anthocyanin accumulation and chlorophyll killing. Moreover, atgstu17 mutants displayed a delayed flowering phenotype under long-day condition. In contrast, 35S:AtGSTU17 transgenic plants exhibited slightly earlier flowering under the same condition. Genetic analysis indicated that PHYA and ATGSTU17 appeared to show a relationship of nonallelic noncomplementation. Promoter activity assays revealed that AtGSTU17 was mainly expressed in vascular tissues of the seedlings and floral organs.
As well, AtGSTU17 was induced by several hormones, such as ABA, 2,4-D, and JA. Intriguingly, atgstu17 seedlings displayed insensitivity to ABA-mediated inhibition of root elongation, whereas, 35S:AtGSTU17 transgenic plants showed almost equal sensitivity to exogenous ABA effect.
Taken together, our data indicate AtGSTU17 may function as a crosstalk between FR light and multiple hormones to regulate hypocotyl elongation and root growth.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:47:18Z (GMT). No. of bitstreams: 1
ntu-95-R93b42011-1.pdf: 1999229 bytes, checksum: 1c8c0eefc7ba0512afcd232bba2d133f (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsABSTRACT 1
摘要 3
CHAPTER 1 INTRODUCTION 5
1-1-1 MOLECULAR PROPERTIES OF PHYTOCHROMES 5
1-1-2 THE FUNCTIONS OF PHYTOCHROMES 7
1-1-3 PHYTOCHROME SIGNALING PATHWAYS 9
1-1-4 DOWNSTREAM EVENTS OF PHYTOCHROME SIGNALING 10
1-2-1 ORGANIZATION, CLASSIFICATION, AND LOCALIZATION OF PLANT GSTS 12
1-2-2 THE FUNCTIONS OF PLANT GSTS 13
1-2-3 CATALYTIC FUNCTION: GLUTATHIONE (GSH) - CONJUGATED ACTIVITY 14
1-2-4 CATALYTIC FUNCTION: GLUTATHIONE (GSH) - DEPENDENT ACTIVITY 14
1-2-5 NON-CATALYTIC FUNCTION: BINDING PROTEINS 16
1-3 THE GOAL OF THIS RESEARCH PROJECT : 17
CHAPTER 2 MATERIALS AND METHODS 18
2-1 PLANT MATERIAL AND GROWTH CONDITION 18
2-2 OVEREXPRESSOR CONSTRUCTION AND PLANT TRANSFORMATION 19
2-3 GENOMIC DNA EXTRACTION 20
2-4 ISOLATION OF T-DNA HOMOZYGOUS LINES 20
2-5 INDUCTION OF ATGSTU17 TRANSCRIPTS BY VARIOUS HORMONES 20
2-6 SEED GERMINATION AND ROOT ELONGATION ASSAY 21
2-7 RNA ISOLATION, NORTHERN BLOTTING, TWO-STEP RT-PCR 21
2-8 GLUTATHIONE S-TRANSFERASE ACTIVITY ASSAY 22
2-9 MEASUREMENT OF ANTHOCYANINS AND CHLOROPHYLLS 23
2-10 HISTOCHEMICAL GUS STAINING 23
CHAPTER 3 RESULTS 25
3-1 ATGSTU17 EXPRESSION IS SUBSTANTIALLY REDUCED IN PHYA AND FIN219 MUTANTS 25
3-2 CLONING AND ENZYMATIC ACTIVITY ASSAYS OF ATGSTU17 26
3-3 ATGSTU17 IS INDUCED RAPIDLY UPON FR PERCEPTION 27
3-4 ATGSTU17 EXPRESSION IS DEPENDENT ON FAR-RED LIGHT INTENSITY AND REGULATED BY PHYTOCHROME A 27
3-5 TRANSGENIC SEEDLINGS OVEREXPRESSING ATGSTU17 DISPLAY A HYPERSENSITIVE PHENOTYPE UNDER CONTINUOUS FAR-RED LIGHT (CFR) 28
3-6 ATGSTU17 MUTANTS EXHIBIT A HYPOSENSITIVE PHENOTYPE UNDER CFR 29
3-7 ATGSTU17 REGULATES ANTHOCYANIN ACCUMULATION, FR-MEDIATED CHLOROPHYLL KILLING AND FLOWERING TIME 30
3-8 GENETIC INTERACTION BETWEEN PHYA AND ATGSTU17 31
3-9 PROMOTER ACTIVITY ASSAYS OF ATGSTU17 IN ARABIDOPSIS 32
3-10 ATGSTU17 EXPRESSION IS INDUCED BY MULTIPLE HORMONES 34
3-11 ATGSTU17 KNOCK-OUT MUTANTS DISPLAY INSENSITIVITIES TO ABA-MEDIATED INHIBITION OF ROOT ELONGATION 35
3-12 ATGSTU17 DOES NEITHER AFFECT ABA-REGULATED SEED GERMINATION NOR DROUGHT- AND COLD-RELATED ABA-RESPONSIVE GENE EXPRESSION 36
CHAPTER 4 DISCUSSION 38
4-1 THE SIZE OF THE FULL-LENGTH ATGSTU17 CDNA 38
4-2 SOME MEMBERS OF THE GLUTATHIONE S-TRANSFERASE GENE FAMILY ARE REGULATED BY LIGHT 39
4-3 ATGSTU17 AND PHYA SHOW NONALLELIC NONCOMPLEMENTATION 40
4-4 FUNCTIONAL ROLES OF ATGSTU17 IN ABA-MEDIATED INHIBITION OF ROOT ELONGATION 40
4-5 ATGSTU17 AFFECTS FR-MEDIATED AND ABA-REGULATED PLANT GROWTH AND DEVELOPMENT 41
FIGURE 45
REFERENCE 69
dc.language.isoen
dc.subject光型態發生zh_TW
dc.subject阿拉伯芥zh_TW
dc.subjectPHOTOMORPHOGENESISen
dc.subjectGSTen
dc.titleGST成員參與阿拉伯芥光訊息傳遞的研究zh_TW
dc.titleStudies of the involvment of glutathione S-transferases in light signal transduction in Arabidopsis thalianaen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林秋榮,吳素幸,詹明才
dc.subject.keyword阿拉伯芥,光型態發生,zh_TW
dc.subject.keywordGST,PHOTOMORPHOGENESIS,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2006-07-17
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved