Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33551
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor諶玉真(Yu-Jane Sheng)
dc.contributor.authorMing-Zhe Wuen
dc.contributor.author吳明哲zh_TW
dc.date.accessioned2021-06-13T04:46:51Z-
dc.date.available2012-08-04
dc.date.copyright2011-08-04
dc.date.issued2011
dc.date.submitted2011-07-26
dc.identifier.citation[1] Eastoe, J.; Dalton, J. S.,Adv. Colloid Interface Sci. 2000, 85 (2-3), 103-144.
[2] Myers, D., Surfactant Science and Technology. John Wiley & Sons, Inc.: 2005.
[3] Pochan, D. J.; Chen, Z. Y.; Cui, H. G.; Hales, K.; Qi, K.; Wooley, K. L.,Science 2004, 306 (5693), 94-97.
[4] Li, Z. B.; Kesselman, E.; Talmon, Y.; Hillmyer, M. A.; Lodge, T. P.,Science 2004, 306 (5693), 98-101.
[5] Cho, B. K.; Jain, A.; Gruner, S. M.; Wiesner, U.,Science 2004, 305 (5690), 1598-1601.
[6] Letchford, K.; Burt, H.,Eur. J. Pharm. Biopharm. 2007, 65 (3), 259-269.
[7] Bahadur, P.; Sastry, N. V.,Eur. Polym. J. 1988, 24 (3), 285-288.
[8] Bennion, B. C.; Eyring, E. M.,J. Colloid Interface Sci. 1970, 32 (2), 286-291.
[9] Yasunaga, T.; Takeda, K.; Harada, S.,J. Colloid Interface Sci. 1973, 42 (2), 457-463.
[10] Mukerjee, P.,J. Phys. Chem. 1972, 76 (4), 565.
[11] Moroi, Y.; Sugii, R.; Matuura, R.,J. Colloid Interface Sci. 1984, 98 (1), 184-191.
[12] Shinoda, K.; Hutchinson, E.,J. Phys. Chem. 1962, 66 (4), 577-582.
[13] Corkill, J. M.; Goodman, J. F.; Walker, T.; Wyer, J.,Proc. R. Soc. Lond. A 1969, 312 (1509), 243
[14] Corkill, J. M.; Walker, T.,J. Colloid Interface Sci. 1972, 39 (3), 621
[15] Schick, M. J., Nonionic surfactants: physical chemistry. M. Dekker: 1987
[16] Inoue, T.; Ebina, H.; Dong, B.; Zheng, L.,J. Colloid Interface Sci. 2007, 314 (1), 236-241.
[17] Edwards, D. A.; Luthy, R. G.; Liu, Z.,Environ. Sci. Technol. 1991, 25 (1), 127-133.
[18] Holmberg, K.; Jonsson, B., Surfactants and polymers in aqueous solution. John Wiley & Sons: 2003.
[19] Varadaraj, R.; Bock, J.; Valint, P.; Zushma, S.; Thomas, R.,J. Phys. Chem. 1991, 95 (4), 1671-1676.
[20] Ueno, M.; Takasawa, Y.; Miyashige, H.; Tabata, Y.; Meguro, K.,Colloid. Polym. Sci. 1981, 259 (7), 761-766.
[21] Rusdi, M.; Moroi, Y.; Hlaing, T.; Matsuoka, K.,Bull. Chem. Soc. Jpn. 2005, 78 (4), 604-610.
[22] Deguchi, K.; Meguro, K.,J. Colloid Interface Sci. 1972, 38 (3), 596-600.
[23] Kawashima, N.; Fujimoto, N.; Meguro, K.,J. Colloid Interface Sci. 1985, 103 (2), 459-465.
[24] Kissa, E., Fluorinated surfactants: synthesis, properties, applications. M. Dekker: 1994.
[25] Varadaraj, R.; Bock, J.; Valint, P.; Zushma, S.; Brons, N.,J. Colloid Interface Sci. 1990, 140 (1), 31-34.
[26] Kratzat, K.; Finkelmann, H.,Langmuir 1996, 12 (7), 1765-1770.
[27] Kuwamura, T.,ACS Symp. Ser. 1984, 253, 27-47.
[28] Kratzat, K.; Guittard, F.; deGivenchy, E. T.; Cambon, A.,Langmuir 1996, 12 (26), 6346-6350.
[29] Kuwamura, T.; Takahash.H,Bull. Chem. Soc. Jpn. 1972, 45 (2), 617-622.
[30] Takahash.H; Kuwamura, T.,Bull. Chem. Soc. Jpn. 1973, 46 (2), 623-626.
[31] Trappmann, B.; Ludwig, K.; Radowski, M. R.; Shukla, A.; Mohr, A.; Rehage, H.; Bottcher, C.; Haag, R.,J. Am. Chem. Soc. 2010, 132 (32), 11119-11124.
[32] Hellberg, P. E.; Bergstrom, K.; Holmberg, K.,J. Surfactants Deterg. 2000, 3 (1), 81-91.
[33] Moroi, Y.; Pramauro, E.; Gratzel, M.; Pelizzetti, E.; Tundo, P.,J. Colloid Interface Sci. 1979, 69 (2), 341-343.
[34] Ikeda, I.; Ozawa, Y.; Nakatsuji, Y.; Okahara, M.,J. Am. Oil Chem. Soc. 1987, 64 (7), 1034-1037.
[35] Campagna, M.; Dei, L.; Gambi, C. M. C.; LoNostro, P.; Zini, S.; Baglioni, P.,J. Phys. Chem. B 1997, 101 (49), 10373-10377.
[36] Klevens, H. B.,J. Phys. Colloid Chem. 1950, 54 (7), 1012-1016.
[37] Lin, W.,Bull. Chem. Soc. Jpn. 1955, 28 (3), 227-230.
[38] Shinoda, K., Colloidal surfactants: some physicochemical properties. Academic Press: 1963.
[39] Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W.,J. Chem. Soc. Faraday Trans. I. 1976, 72, 1525-1568.
[40] Hoogerbrugge, P. J.; Koelman, J.,Europhys. Lett. 1992, 19 (3), 155-160.
[41] Groot, R. D.; Warren, P. B.,J. Chem. Phys. 1997, 107 (11), 4423-4435.
[42] Espanol, P.; Warren, P.,Europhys. Lett. 1995, 30 (4), 191-196.
[43] Allen, M. P.; Tildesley, D. J., Computer simulation of liquids. Clarendon Press: 1999.
[44] Schlijper, A. G.; Manke, C. W.; Madden, W. G.; Kong, Y.,Int. J. Mod. Phys. C 1997, 8 (4), 919-929.
[45] Yamamoto, S.; Maruyama, Y.; Hyodo, S.,J. Chem. Phys. 2002, 116 (13), 5842-5849.
[46] Lin, C. M.; Chen, Y. Z.; Sheng, Y. J.; Tsao, H. K.,React. Funct. Polym. 2009, 69 (7), 539-545.
[47] Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R.,J. Chem. Phys. 1982, 76 (1), 637-649.
[48] Desplat, J. C.; Care, C. M.,Mol. Phys. 1996, 87 (2), 441-453.
[49] Zaldivar, M.; Larson, R. G.,Langmuir 2003, 19 (24), 10434-10442.
[50] Rudnick, J.; Gaspari, G.,J. Phys. A-Math. Gen. 1986, 19 (4), L191-L193.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33551-
dc.description.abstract雙親分子形成微胞(micelle)的現象一直以來都是膠體科學的重要研究領域。一般而言當溶液濃度高於定義上的臨界微胞濃度(CMC)時,具有規整性結構的微胞才會存在於雙親分子溶液中。微胞在醫學上與工業上皆有重要的應用,但是它的性質深受許多因素的影響,例如:雙親分子的濃度、雙親分子的結構,以及溶液中添加劑,因此全面性地研究雙親分子在溶液中的行為是非常重要的。
本研究利用耗散粒子動力學法(Dissipative Particle Dynamics)研究雙親分子的臨界微胞濃度與聚集行為。我們在研究中有系統地探討了雙親分子之尾基與頭基長度,分子結構(直線型、星狀、樹枝狀、環狀以及不同鏈的硬度),非極性添加劑,以及在非極性溶劑下對其臨界微胞濃度與聚集方式所造成的影響。在尾基與頭基長度的研究部分,我們發現臨界微胞濃度隨著尾基長度的增加而下降,但隨著頭基長度的增加而上升,兩者相較之下顯示尾基對於臨界微胞濃度的影響是勝過於頭基的。而根據微胞的分析結果得知,具有較大的尾基長度/頭基長度比例與較長的雙親分子會形成具有較大聚集數的微胞。除了尾基長度與頭基長度外,雙親分子結構對其溶液性質也造成重大的影響。我們發現雙親分子不論其疏水端或親水端的分枝或環狀結構皆會造成臨界微胞濃度的上升,然而當其疏水端或是親水端成為具有硬度的鏈段時,卻會造成臨界微胞濃度的下降。由微胞的型態與分析結果發現,雙親分子的尾基結構改變與頭基結構改變會造成不同的聚集結果。另外針對非極性添加劑的部分,我們改變非極性添加劑的濃度、長度以及結構(直線型與環狀)來探討這些變化對於雙親分子水溶液的影響,在此之中我們發現了許多有趣的聚集型態。除了以水作為溶劑之外,我們也研究在非極性溶劑下所形成的反微胞(inverted micelle)之性質。我們發現隨著非極性溶劑長度的增加,臨界微胞濃度會先急遽的下降再轉為平緩。
此研究成果針對雙親分子溶液在各項內部變因與外部變因下所產生的變化進行了全面性的探討,其中大部分的臨界微胞濃度與各項變因之間的關係和諸多實驗結果十分吻合,對於某些具有特殊結構與在特別條件下的雙親分子,雖然在實驗上尚未被深入探討,但是我們的研究結果將可成為未來實驗研究上的參考。
zh_TW
dc.description.abstractThe micellization phenomena of the amphiphiles have been an important area of the research in colloid science for a long time. The ordered structure, micelle, which is formed in the amphiphile solution, exists only above a fairly well-defined concentration, CMC. Micelles could offer a powerful multifunctional platform for medical and industrial applications. Various factors, such as amphiphile concentration, amphiphile architecture, and additives, all significantly affect the properties of the micelles. Thus, to thoroughly investigate the solution behavior of the amphiphiles is of great importance.
The Dissipative Particle Dynamics was employed to study the CMC and aggregative behavior of the amphiphilic molecules. The effects of the tail/head length, amphiphile architecture (linear type, miktoarm star type, dendritic type, cyclic type and chain rigidity), nonpolar additives, and nonpolar solvent on the CMC and the aggregative patterns of the amphiphiles are systematically investigated. For the tail/head length, it is found that the CMC declines with increasing tail length but rises with increasing head length. Compared to head group, tail group has comparatively significant influence on the CMC. According to the analyses of the micelles, we found that amphiphiles with higher tail/head ratio or longer total length form the micelle in larger quantities. In addition to the tail and head length, amphiphile structures also have a considerable impact on the amphiphile solution properties. The branching and cyclic structures of either the hydrophobe or hydrophile lead to a striking increase in the CMC; nevertheless, as to the cases with rigid chain, amphiphiles with the greater degree of the rigidity on the tail group or head group have lower CMC. Form the analyses and morphologies of the micelles, we observed that the aggregative patterns of the amphiphiles with the changes in the tail structure and head structure are quite different. On the other hand, the changes in the concentration, length, and structure (cyclic and linear type) of the nonpolar additives were performed to study their effects on the behaviors of the amphiphiles in aqueous media, where some interesting supramolecular structures were observed. Besides the aqueous solvent, we investigated the properties of the inverted micelles formed in the nonpolar solvent. As the nonpolar solvent length increases, the CMC decreases sharply and then gradually.
This work could provide a thorough investigation on various factors which influence the amphiphile solution. The relationship between the CMC and these factors from our investigation is consistent with most experimental findings. For the amphiphiles with unique architectures or in special condition which have not been fully investigated, what we study could be a valuable reference for the future experimental works.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:46:51Z (GMT). No. of bitstreams: 1
ntu-100-R98524041-1.pdf: 4233059 bytes, checksum: 74d986455851a1276ec0c0af2100f36e (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝 II
摘要 IV
Abstract V
Content VII
Table Captions IX
Figure Captions X
Chapter 1 Introduction 1
1.1 Amphiphilic Molecules 1
1.1.1 Surfactant 1
1.1.2 Amphiphilic Block Copolymer 5
1.2 Solution Behavior of amphiphiles 8
1.2.1 Micellar Theory 8
1.2.2 Critical Micelle Concentration (CMC) 10
1.2.3 The Analyses of Micelles 16
1.3 Research Objectives 19
Chapter 2 Simulation Methodology 21
2.1 Dissipative Particle Dynamics (DPD) 21
2.1.1 Introduction 21
2.1.2 Principles of DPD 23
2.1.3 Model and Parameters 37
2.1.4 Determination of CMC and Analyses 44
Chapter 3 Results and Discussion 48
3.1 Head and Tail Length Effect 48
3.1.1 Effects of Tail Length 49
3.1.2 Effects of Head Length 49
3.1.3 Diverse Head/Tail Ratios 51
3.2 Amphiphile Architecture Effect 60
3.2.1 Miktoarm Star 61
3.2.2 Dendritic Star 71
3.2.3 Cyclic Type 73
3.2.4 Rigidity 76
3.3 Effect of Nonpolar Additives 85
3.3.1 Diverse Concentrations of nonpolar additives 85
3.3.2 Effect of the length of added nonpolar molecules 86
3.3.3 Changes in the structure of nonpolar additives 96
3.4 Nonpolar Solvents 97
3.4.1 Diverse lengths of the nonpolar solvents 97
Chapter 4 Conclusion 102
Chapter 5 Reference 105
dc.language.isoen
dc.title以耗散粒子動力學法研究雙親性分子之臨界微胞濃度及其聚集行為zh_TW
dc.titleAn Investigation of Critical Micelle Concentration and Aggregative Behavior of Amphiphilic Molecules Using Dissipative Particle Dynamicsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曹恆光(Heng-Kwong Tsao),林祥泰(Shiang-Tai Lin),吳台偉(Tai-Wei Wu),陸 駿 逸(Chun-Yi Lu)
dc.subject.keyword耗散粒子動力學法,雙親性分子,臨界微胞濃度,微胞,zh_TW
dc.subject.keywordDissipative Particle Dynamics,Amphiphilic Molecules,Critical Micelle Concentration,Micelle,en
dc.relation.page108
dc.rights.note有償授權
dc.date.accepted2011-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
4.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved