請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33550
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賈景山 | |
dc.contributor.author | Heng-Chang Chen | en |
dc.contributor.author | 陳珩昌 | zh_TW |
dc.date.accessioned | 2021-06-13T04:46:48Z | - |
dc.date.available | 2011-08-03 | |
dc.date.copyright | 2006-08-03 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-17 | |
dc.identifier.citation | 1. Ajdic D., W. M. McShan, R. E. McLaughlin, G. Savic, J. Chang, M. B. Carson, C. Primeaux, R. Tian, S. Kenton, H. Jia, S. Lin, Y. Qian, S. Li, H. Zhu, F. Najar, H. Lai, J. White, B. A. Roe, and J. J. Ferretti. 2002. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl. Acad. Sci. 99: 14434-14439.
2. Bender G. R., S. V. Sutton, and R. E. Marquis. 1986. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect. Immun. 53: 1134-1138. 3. Bernard Gu., M. D. Senadheera, G. A. Spatafora, Y. C. Huang, J. Choi, D. C. I. Hung, J. S. Treglown, S. D.Goodman, R. P. Ellen, and D. G. Cvitkovitch. 2005. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J. Bacteriol. 187 (12): 4064- 4076. 4. Bisno A. L., M. O. Brito, and C. M. Collins. 2003. Molecular basis of group A streptococcal virulence. The Lancet Infectious Disease. 3 (4): 191-200. 5. Biswas S., and I. Biswas. 2006. Regulation of the glucosyltransferase (gtfBC) operon by covR in Streptococcus mutans. J. Bacteriol. 188 (3): 988-998. 6. Bogdan C., M. Roellinghoff and A. Diefenbach. 2000. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 12: 64-76. 7. Borjesson D. L., S. D. Kobayashi, A. R. Whitney, J. M. Voyich, C. M. Argue, and F. R. DeLeo. 2005. Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils. J. Immunol. 174: 6364-6372. 8. Bratthall D. 1969. Immunodiffusion studies on the serological specificity of streptococci resembling Streptococcus mutans. Odontol. Revy. 21: 231-43. 9. Brunskill E. W., and K. W. Bayles. 1996. Identification and molecular characterization of a putative regulatory locus that affects autolysis in Staphylococcus aureus. J. Bacteriol. 178 (3): 611-619. 10. Carlsson J., and I. R. Hamiton. 1996. Differential toxic effects of lactate and acetate on the metabolism of Streptococcus mutans and Streptococcus sanguis. Oral Microbiol. Immunol. 11: 412-419. 11. Chakravortty D., I. Hansen-Wester, and M. Hensel. 2002. Salmonella pathogenicity Island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J. Exp. Med. 195 (9): 1155-1166. 12. Clarke J. R. 1924. On the bacterial factor in the aetiology of dental caries. British. J. Exp. Pathol. 5: 141-148. 13. Cleary P. P. 2006. Streptococcus moves inward. Nat. Med. 12 (4): 384-386. 14. Cross A. R., and A. W. Segal. 2004. The NADPH oxidase of professional phagocytes--prototype of the NOX electron transport chain systems. Biochim. Biophys. Acta. 1657(1): 1-22. 15. Cunningham M. W. 2000. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13 (3): 470-511. 16. Dalton T. L., R. I. Hobb, and J. R. Scott. 2006. Analysis of the role of CovR and CovS in the dissemination of Streptococcus pyogenes in invasive skin disease. Micro. Pathog. P.1-7. 17. Darwin K. H., S. Ehrt, J. Gutierrez-Ramos, N. Weich, and C. F. Nathan. 2003. The proteasome of Mycobacterium tuberculosis is required fro resistance to nitric oxide. Science 302: 1963-1966. 18. Dashper S. G., and E. C. Reynolds. 1992. pH regulation by Streptococcus mutans. J. Dent. Res. 71: 1159-1165. 19. Douglas C. W., J. Heath, K. K. Hampton, and F. E. Preston. 1993. Identity of viridians streptococci isolated from cases of infective endocarditis. J. Med. Microbiol. 39: 179-183. 20. Ehrt S., M. U. Shiloh, J. Ruan, M. Choi, S. Gunzburg, C. Nathan, Q. Xie, and L. W. Riley. 1997. A novel antioxidant gene from Mycobacterium tuberculosis. J. Exp. Med. 186 (11): 1885-1896. 21. Fradin C., M. Kretschmar, T. Nichterlein, C. Gaillardin, C. d’Enfert, and B. Hube. 2003. Stage-specific gene expression of Candida albicans in human blood. Mol. Microbiol. 47 (6): 1523-1543. 22. Fradin C., P. De Groot, D. MacCallum, M. Schaller, F. Klis, F. C. Odds, and B. Hube. 2005. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol. Microl. 56 (2): 397-415. 23. Gold O. G., H. V. Jordan, and J. Van Houte. 1973. A selective medium for Streptococcus mutans. Arch. Oral Biol. 18: 1357-64. 24. Graham M. R., L. M. Smoot, C. A. Lux Miigliaccio, K. Virtaneva, D. E. Sturdevant, S. F. Porcella, M. J. Federle, G. J. Adams, J. R. Scott, and J. M. Musser. 2002. Virulence control in group A streptococcus by a two-component gene regulatory system: Global expression profiling and in vivo infection modeling. Proc. Natl. Acad. Sci. 99:13855-13860. 25. Graham M. R., K. Virtaaneva, S. F. Porcella, W. T. Barry, B. B. Gowen, C. R. Johnson, F. A. Wright, and J. M. Musser. 2005. Group A streptococcus transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival stragies. Am. J. Pathol. 166:455-465. 26. Green J., and M. S. Paget. 2004. Bacterial redox sensors. Nat. Rev. Microbiol. 2: 954-966. 27. Groote M. A., U. A. Ochsner, M. U. Shiloh, C. Nathan, J. M. McCord, M. C. Dinauer, S. J. Libby, A. Vazquez-Torres, Y. Xu, and F. C. Fang. 1997. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc. Natl. Acad. Sci. 94: 13997-14001. 28. Hamada S., and H. D. Slade. 1980. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev. 44: 331-84. 29. Hidalgo E., H. Ding, and B. Demple. 1997. Redox signal transduction: mutations shifting [2Fe-2S] centers of the SoxR sensor-regulator to the oxidized form. Cell 88: 121-129. 30. Higuchi M., Y. Yamamoto, L. B. Poole, M. Shimada, Y. Sato, N. Takahashi, and Y. Kamio. 1999. Function of two types of NADPH oxidases in energy metabolism and oxidative stress of Streptococcus mutans. J. Bacteriol. 181 (19): 5940-5947. 31. Idone V., S. Brendtro, R. Gillespie, S. Kocaj, E. Peterson, M. Rendi, W. Warren, S. Michalek, K. Krastel, D. Cvitkovitch, and G. Spatafora. 2003. Effect of an orphan response regulator on Streptococcus mutans sucrose-dependent adherence and cariogenesis. Infect. Immun. 71: 4351-4360. 32. Jansen W. T. M., J. Gootjes, M. Zelle, D. V. Madore, J. Verhoef, H. Snippe, and A. F. M. Verheul. 1998. Use of highly encapsulated Streptococcus pneumoniae Strains in a Flow-cytometric assay for assessment of the phagocytic capacity of serotype-specific antibodies. Clin. Diagn. Lab. Immunol. 5 (5): 703-710. 33. Jayaraman G. C., J. E. Penders, and R. A. Burne. 1997. Transcriptional analysis of Streptococcus mutans hrcA, grpE and dnaK genes and regulation of expression in response to heat shock and environmental acidification. Mol. Microbiol. 25: 329-341. 34. Johansson P. B., F. Levander, U. von Pawel-Rammingen, T. Berggård, L. Björck, and P. James. 2005. The protein expression of Streptococcus pyogenes is significantly influenced by human plasma. J. Proteome Research. 4: 2302-2311. 35. Kreikemeyer B., K. S. Mclver, and A. Podbielski. 2003. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions. Trends Microl. 11 (5): 224-232. 36. Lei B., F. R. Deleo, N. P. Hoe, M. R. Graham, S. T. Mackie, R. L. Cole, M. Liu, H. R. Hill, D. E. Low, M. J. Federle, J. R. Scott, and J. M. Musser. 2001. Evasion of human innate and acquired immunity by a bacterial homolog of CD11b that inhibits opsonophagocytosis. Nat. Med. 7 (12): 1298-1305. 37. Loesche W. J. (ed.). 1986. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50 (4): 353-380. 38. Manca C., S. Paul, C. E. Barry III, V. H. Freedman, and G. Kaplan. 1999. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect. Immun. 67 (1): 74-79. 39. Maqsood M. E., and M. M. Bashir. 2005. Blood-dependent redox activity during extracorporeal circulation in health and disease. The Cardiology. 1 (13): 156-157. 40. McCarty J. S., and G. C. Walker. 1991. DnaK as a thermometor: threonine-199 is site of autophosphrylation and is critical for ATPase activity. Proc. Natl. Acad. Sci. 88: 9513-9617. 41. Nakano K., M. Tsuji, K. Nishimura, R. Normura, and T. Ooshima. 2006. Contribution of cell surface protein antigen PAc of Streptococcus mutans to bacteremia. Microbes Infect. 8: 114-121. 42. Nathan C., and M. U. Shiloh. 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. 97 (16): 8841-8848. 43. Nomura R., K. Nakano, T. Ooshima. 2004. Contribution of glucan-binding protein C of Streptococcus mutans to bacteremia occurrence. Arch. Oral Biol. 49: 783-788. 44. Permpanich P., M. J. Kowolik, and D. M. Galli. 2006. Resistance of fluorescent-labelled Actinobacillus actinomycetemcomitans strains to phagocytosis and killing by human neutrophils. Cell. Microbiol. 8 (1): 72-84. 45. Poole L. B., M. Higuchi, M. Shimada, M. L. Calzi, and Y. Kamio. 2000. Streptococcus mutans H2O2-forming NADH oxidase is an alkyl hydroperoxide reductase protein. Free Radic. Biol. Med. 28 (1): 108-120. 46. Presterl E., E. Rokita, W. Graninger, and A. M. Hirschl. 2001. Dysregulation of monocyte oxidative burst in streptococcal endocarditis. Eur. J. Clin. Invest. 31: 902-906. 47. Qi F., J. Merritt, R. Lux, and W. Shi. 2004. Inactivation of the ciaH gene in Streptococcus mutans diminishes mutacin production and competence development, alters surose-dependent biofilm formation, and reduces stress tolerance. Infect. Immun. 72 (8): 4895-4899. 48. Que Y. A., P. Francois, J. A. Haefliger, J. M. Entenza, P. Vaudaux, and P. Moreillon. 2001. Reassessing the role of Staphylococcus aureus clumping factor and fibronectin-binding protein by expression in Lactococcus lactis. Infect. Immun. 69: 6296-6302. 49. Que Y. A., J. A. Haefliger, L. Piroth, P. Francois, E. Widmer, J. M. Entenza, B. Sinha, M. Herrmann, P. Francioli, P. Vaudaux, and P. Moreillon. 2005. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J. Exp. Med. 201: 1627-1635. 50. Raschke W. C., S. Baird, and P. R. Nakoinz. 1978. Functional macrophage cell lines transformed by abelson leukemia virus. Cell 15 (1): 261-167. 51. Sandin C., F. Carlsson, and G. Lindahl. 2006. Binding of human plasma proteins to Streptococcus pyogenes M protein determines the location of opsonic and non-opsonic epitopes. Mol. Microbiol. 59 (1): 20-30. 52. Sumimoto H., K. Miyano, and R. Takeya. 2005. Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochem. Biophys. Res. Commun. 338: 677-686. 53. Svensater G., B. Sjogreen, and I. R. Hamiton. 2000. Multiple stress responses in Streptococcus mutans and the induction of general and stress-specific proteins. Microbiology 146 (Pt 1): 107-117. 54. Thomas E. L., and K. A. Pera. 1983. Oxygen metabolism of Steptococcus mutans: uptake of oxygen and release of superoxide and hydrogen peroxide. J. Bacteriol. 154 (3): 1236-1244. 55. Tsuda H., Y. Yamashita, K. Toyoshima, N. Yamaguchi, T. Oho, Y. Nakano, K. Nagata, and T. Koga. 2000. Role of serotype-specific polysaccharide in the resistance of Streptococcus mutans to phagocytosis by human polymorphonuclear leukocytes. Infect. Immun. 68 (2): 644-650. 56. Underhill D. M., and A. Ozinsky. 2002. Phagocytosis of microbes: complexity in action. Annu. Rev. Immunol. 20: 825-52. 57. Vazquez-Torres A., Y. Xu, J. Jones-Carson, D. W. Holden, S. M. Lucia, M. C. Dinauer, P. Mastroeni, and F. C. Fang. 2000. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science. 287: 1655-1658. 58. Vriesema A. J. M., J. Dankert, and S. A. J. Zaat. 2000. A shift from oral to blood pH is a stimulus for adaptive gene expression of Streptococcus gordonii CH1 and induces protein against oxidative stress and enhanced bacterial growth by expression of msrA. Infect. Immun. 68 (3): 1061-1068. 59. Voyich J. M., D. E. Sturdevant, K. R. Braughton, S. D, Kobayashi, B. Lei, K. Virtaneva, D. W. Dorward, J. M. Musser, and F. R. DeLeo. 2003. Genome-wide protective responsee used by group A streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. 100: 1996-2001. 60. Voyich J. M., K. R. Braughton, D. E. Sturdevant, C. Vuong, S. D. Kobayashi, S. F. Porcella, M. Otto, J. M. Musser, and F. R. DeLeo. 2004. Engagement of the pathogen survival response used by group A streptococcus to avert destruction by innate host defense. J. Immunol. 173: 1194-1201. 61. Voyich J. M., K. R. Braughton, D. E. Sturdevant, A. R. Whitney, B. Säid-Salim, S. F. Porcella, R. D. Long, D. W. Dorward, D. J. Gardner, B. N. Kreiswirth, J. M. Musser, and F. R. DeLeo. 2005. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils. J. Immunol. 175: 3907-3919. 62. Wiley J., and I. Sons. 1994. Measurement of bacterial ingestion and killing by macrophages. Current Protocols in Immunol. UNIT 14.6 Summplement 12. 63. Yamamoto Y. Y. Kamio, and M. Higuchi. 1999. Cloning, nucleotide sequencing, and disruption of Streptococcus mutans glutathione reductase gene (gor). Biosci. Biotechnol. Biochem. 63 (6): 1056-1062. 64. Yamamoto Y., M. Higuchi, L. B. Poole, and Y. Kamio. 2000. Role of the dpr product in oxygen tolerance in Streptococcus mutans. J. Bacteriol. 182 (13): 3740-3747. 65. Yamamoto Y., L. B. Poole, R. R. Hantgan, and Y. Kamio. 2002. An Iron-Binding Protein, Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl radical formation in vitro. J. Bacteriol. 184 (11): 2931-2939. 66. Yamamoto Y., K. Fukui, N. Koujin, H. Ohya, K. Kimura, and Y. Kamio. 2004. Regulation of the intracellular free iron pool by Dpr provides oxygen tolerance to Streptococcus mutans. J. Bacteriol. 186 (18): 5997-6002. 67. Zheng M., F. Aslund, and G. Storz. 1998. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science. 279: 1718-1721. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33550 | - |
dc.description.abstract | 轉糖鏈球菌(Streptococcus mutans) 為人類齲齒的致病菌,並也是人類感染性心內膜炎的機會致病菌之一。在感染性心內膜炎發展的初期,轉糖鏈球菌必須由口腔進入血液循環之中,而暴露在血漿之中。血漿是一成份複雜的豐富培養基。一旦轉糖鏈球菌進入血液中後,細菌必須面對新環境所產生的壓力;而環境中壓力所產生的訊號也會刺激細菌特別基因的表現來適應與生存於改變的環境中。
在本實驗的第一部份,我們利用微陣列分析來探討轉醣鏈球菌受血漿刺激後之基因的表現。在本篇研究中,我們著重於轉糖鏈球菌內與氧化還原相關的基因及一個two component system response regulator, scnR 二者間的關係。經過胺基酸序列比對後,我們發現到scnR 與Streptococcus pyogenes 內用以抵抗吞噬細胞毒殺作用的irr response regulator 有35 % 的一致性。爾後,我們建構了轉糖鏈球菌scnR 的突變株,並分析在抵抗Raw264.7 吞噬作用以及細胞毒殺作用能力上,與轉糖鏈球菌野生株的差異。我們發現scnR 突變株在消弭經由Raw264.7 所產生的反應性含氧物種之能力上較野生株降低許多。我們也發現,轉糖鏈球菌野生株在經過血漿刺激後,可以增加經過Raw264.7 毒殺作用後的存活率;然而,此現象卻沒有在scnR突變株中發現。因此,我們認為轉糖鏈球菌利用two component system response regulator scnR 調控下游與氧化還原相關基因的表現,對於抵抗Raw264.7 的毒殺作用是重要的;並且在經由血漿刺激後,是可以增加細菌scnR與氧化還原相關基因的表現。 | zh_TW |
dc.description.abstract | Streptococcus mutans, being the principal etiological agent of dental caries, is also one of the most common opportunistic pathogens isolated from patients with infective endocarditis (IE). As an early step in the development of infective endocarditis, S. mutans gains access to the bloodstream from the oral cavity, and exposes in human plasma. We hypothesized that plasma as a complex medium could trigger S. mutans cells to adapt to different stresses through inducing specific gene expression upon sensing of signals from the plasma components.
In the first part of this study, we used oligonucleotide DNA microarray to analyze the expression of the genes after plasma stimulation. We focused on the function of redox genes and one of the two component system response regulator, scnR, in this study. We found that the amino acid sequence of scnR showed 35% identify to irr response regulator, which is associated with ability against phagocytic killing in Streptococcus pyogenes. Furthermore, an isogenic scnR deletion mutant exhibited decreased ability to eliminate the reactive oxygen species (ROS) produced in Raw264.7 in comparison with wild-type S. mutans strain. In addition, plasma-induced resistance to phagocytic killing was significantly reduced in scnR deletion mutant. We hypothesize that the two component system response regulator, scnR, is important for S. mutans against phagocytic killing in Raw264.7 through stimulating redox genes expression. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:46:48Z (GMT). No. of bitstreams: 1 ntu-95-R93445125-1.pdf: 1084387 bytes, checksum: c4644854282d89596679a2882380bea4 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 誌謝………………………………………………………………………… i
中文摘要………………………………………………………………...… ii 英文摘要………………………………………………………………..… iii 目錄……………………………………………………………………….. iv 1. 序論………………………………………………………………….…. 1 1.1. 轉糖鏈球菌 (Streptococcus mutans) 之形態與鑑定………………………... 1 1.2. 轉糖鏈球菌的分子生物學………………………………………………….… 2 1.2.1. 轉糖鏈球菌的基因體…………………………………………………... 2 1.2.2. 轉糖鏈球菌的Two component systems (TCSs)…………………........... 3 1.3. 轉糖鏈球菌與人類疾病的關係………………………………………............ 3 1.3.1. 齲齒……………………………………………………………………... 3 1.3.2. 感染性心內膜炎 (Infective endocarditis)……………………………… 3 1.4. 轉糖鏈球菌與環境壓力的關係……………………………………………… 3 1.4.1. 轉糖鏈球菌與有氧環境的抗衡…………………………………………. 4 1.4.2. 轉糖鏈球菌與其他環境壓力…………………………………………... 5 1.5. 轉糖鏈球菌的感染症………………………………………………………… 5 1.5.1. 致病菌與血液的互動…………………………………………………... 5 1.5.2. 宿主先天性防禦系統 (Innate immune system)…………………........... 6 1.5.3. 鏈球菌與吞噬細胞的互動………………………………………………. 8 1.6. 前人之研究與本論文的研究目的…………………………………………….. 8 2. 實驗材料與方法……………………………………………………….. 11 2.1. 菌株與質體……………………………………………………………………. 11 2.2. 藥品與材料……………………………………………………………………. 11 2.3. 細菌培養……………………………………………………………………… 11 2.4. 轉糖鏈球菌染色體DNA 的純化…………………………………………….. 11 2.5. 聚合酶連鎖反應 (Polymerase chain reaction, PCR)………………………… 12 2.6. 限制酶的切割……………………………………………………………..….. 12 2.7. 洋菜膠電泳分析………………………………………………………….…... 12 2.8. 洋菜電泳膠中DNA 的分離與純化………………………………………… 13 2.9. 轉糖鏈球菌RNA 的純化…………………………………………………….. 13 2.10. 轉糖鏈球菌基因體微陣列分析…………………………………………….. 14 2.11. 反轉錄聚合酶鏈鎖反應 (Reverse transcriptase polymerase chain reaction, RT-PCR)……………………………………………………………………….. 16 2.12. 轉糖鏈球菌的轉形作用…………………………………………………….. 16 2.12.1. 轉糖鏈球菌受容細胞之製備………………………………………….. 16 2.12.2. 轉糖鏈球菌之轉形作用……………………………………………….. 16 2.13. 轉糖鏈球菌生長曲線之測定……………………………………………….. 17 2.14. 老鼠巨噬細胞細胞株 (Raw264.7) 之培養………………………………… 17 2.15. 老鼠巨噬細胞吞噬能力之分析…………………………………………….. 17 2.16. 流式細胞儀 (Flow cytometry) 分析老鼠巨噬細胞之吞噬能力…………… 18 2.17. 老鼠巨噬細胞殺菌能力之分析……………………………………………… 19 2.18. 反應性含氧物種 (Reactive oxygen species, ROS) 含量之測定…………… 19 2.19. 反應性含氮物種 (Reactive nitrogen species, RNS) 含量之測定…………. 19 2.20. In vitro 過氧化氫殺菌能力之分析……………………………………………... 20 3. 結果…………………………………………………………………… 21 3.1. 轉糖鏈球菌受血漿刺激後基因表現之微陣列分析………………………... 21 3.1.1. 轉糖鏈球菌中與氧化還原相關基因的表現…………………………... 21 3.1.2. 轉糖鏈球菌中two component system 的表現………………………... 22 3.2. 轉糖鏈球菌scnR 突變株的構築及生長曲線的測定………………………. 22 3.3. 以RNA 定量分析gcrR, scnR 及抗氧化相關基因在血漿刺激下的表現… 23 3.4. 老鼠巨噬細胞細胞株 (Raw264.7) 吞噬轉糖鏈球菌之能力分析…………….. 24 3.5. 老鼠巨噬細胞細胞株殺菌能力 (bactericidal activity) 分析……………….. 26 3.6. 轉糖鏈球菌抑制老鼠巨噬細胞細胞株所產生的反應性含氧物種………... 27 3.7. In vitro 過氧化氫殺菌能力分析………………………………………….….. 29 3.8. 轉糖鏈球菌經由scnR 調控以抵抗吞噬細胞毒殺作用之模式圖…………. 30 4. 討論…………………………………………………………………… 31 5. 圖表…………………………………………………………………… 37 Table I. Summary of gene categories with increased transcription in mid-exponential phase of S. mutans GS-5R strain cultured with plasma……………….. 37 Table II. Summary of gene categories with increased transcription in stationary phase of S. mutans GS-5R strain cultured with plasma……………………... 38 Table III. The fold changes of selected genes of wild-type S. mutans and scnR deleted mutant strain in mid-exponential and stationary phase………………... 39 Fig. 1. Plasma-induced redox genes expression in mid-exponential phase and stationary phase S. mutans GS-5R strain……………………………… 40 Fig. 2. Schematic model for plasma-induced redox genes……………………... 41 Fig. 3. Construction of S. mutans two component sytem response regulator scnR deleted mutant by homologous recombination…………………….… 42 Fig. 4. Confirmation of microarray data by RT-PCR analysis………………….. 43 Fig. 5. S. mutans-Raw264.7 interaction………………………………………… 44 Fig. 6. Flow cytometry scatter plot analysis of Raw264.7 cells after phagocytosis of FITC-labled S. mutans. ………………………………………………... 45 Fig. 7. Survival of S. mutans by Raw264.7 killing………………………….…… 46 Fig. 8. Role of scnR in eliminating ROS in Raw264.7…………………………… 47 Fig. 9. Role of scnR against H2O2 killing…………………………........................ 48 Fig. 10. Proposed mechanism of two component system response regulator scnR-mediated protection against phagocytic killing…………………… 49 Appendix I………………………………………………………………………... 50 Appendix II……………………………………………………………………….. 50 6. 參考文獻……………………………………………………………….. 51 | |
dc.language.iso | zh-TW | |
dc.title | 轉糖鏈球菌抑制吞噬細胞毒殺作用之機轉與基因調控 | zh_TW |
dc.title | Mechanisms and Gene Regulation Associated with Inhibition of Phagocytic Killing in Streptococcus mutans | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李建國,陳振陽,賴信志 | |
dc.subject.keyword | 轉糖鏈球菌,吞噬細胞,毒殺,基因調控, | zh_TW |
dc.subject.keyword | Streptococcus mutans,Phagocytic Killing,Gene Regulation, | en |
dc.relation.page | 58 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-18 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 1.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。