Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33520
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅立成(Li-Chen Fu)
dc.contributor.authorZhao-Kai Wuen
dc.contributor.author吳兆開zh_TW
dc.date.accessioned2021-06-13T04:45:06Z-
dc.date.available2006-07-28
dc.date.copyright2006-07-28
dc.date.issued2006
dc.date.submitted2006-07-17
dc.identifier.citationReferences
[1] M. Sitti, and H. Hashimoto, “Two-dimensional fine particle positioning using a piezoresistive cantilever as a micro/nano-manipulator,” IEEE Int. Conf. on Robotics and Automation, Vol. 4, pp.2729 –2735, 1999.
[2] H. M. Gutierrez, and P. I. Ro, “Sliding-mode control of a nonlinear-input system: application to a magnetically levitated fast-tool servo,”, IEEE Trans. on Industrial Electronics, Vol. 45, No. 6, pp.921 –927, 1998.
[3] X. Li, and Y. Bin, “Adaptive robust precision motion control of linear motors with negligible electrical dynamics: Theory and experiments,” IEEE/ASME Trans. on Mechatronics, Vol. 6, Issue: 4, pp.444 –452, 2001.
[4] P. Y. Huang, Y. Y. Chen, and M. S. Chen. “Position-dependent friction compensation for ballscrew tables,” Proc. of the IEEE Int. Conf. on Control Applications, Vol. 2, pp.863 –867, 1998.
[5] T. Galante et al., “Design, modeling, and performance of a high force piezoelectric inchworm motor,” Proc. of the Smart Structures and Integrated Systems, Vol. 3329, pp.756–767, 1998.
[6] N. Shimizu, T. Kimura, T. Nakamura, and I. Umebu, “An ultrahigh vacuum scanning tunneling microscope with a new inchworm mechanism,” J. Vac. Sci. Tech. A, Vol. 8, No. 1, pp.333–335, 1990.
[7] P. E. Tenzer and R. B. Mrad, “A systematic procedure for the design of piezoelectric inchworm precision positioners,” IEEE/ASME Trans. on Mechatronics, Vol. 9, No. 2, 2004.
[8] J. Y. Shim, and D. G. Gweon, “Piezo-driven metrological multi-axis nanopositioner,” Review of Scientific Intruments, American Institute of Physics, 2001.
[9] S. T. Smith, Flexures: Elements of Elastic Mechanisms, Gordon & Breach, Amsterdam, 2000.
[10] S. H. Chang, C. E. Tseng, and H. C. Chien, “An ultra-precision XYθZ piezo micropositioner Part I: Design and analysis,” IEEE Trans. on Ultrason., Ferroelect., Freq. Contr., Vol. 46, No. 4, pp.897-905, Jul. 1999.
[11] H. H. Pham, and I. M. Chen, “Optimal synthesis for workspace and manipulability of parallel flexure mechanism,” Proc. of the 11th World Congress in Mechanism and Machine Science, pp.18-21, Aug. 2003.
[12] B. J. Yi, G. B. Chung, H. Y. Na, W. K. Kim, and I. H. Suh, “Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges,” IEEE Trans. on Robotics and Automation, Vol. 19, No. 4, 2003.
[13] S. Awtar, “Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms,” PhD thesis, Massachusetts Institute of Technology, 2004.
[14] K. J. Pister, R. S. Fearing, and R. T. Howe, “A planar air levitated electrostatic actuator system,” Micro Electro Mechanical Systems, Proc. of the IEEE Conf. on Micro Electro Mechanical Systems, pp.67-71, Feb. 1990.
[15] W. J. Kim, D. L. Trumper, and J. H. Lang, “Modeling and vector control of planar magnetic levitator,” IEEE Trans. on Industry Applications, Vol. 34, No. 6, pp. 1254-1262, Nov./Dec. 1998.
[16] W. J. Kim, and D. L. Trumper, “Velocity regulation limits in a precision two-dimensional magnetic levitator,” IEEE Int. Conf. on Magnetics, May 1999.
[17] W. J. Kim, “Six-axis nano-positioning with planar magnetic levitation,” Proc. of the 1st IEEE Conf. on Nanotechnology, pp.174-179, Oct. 2001.
[18] W. J. Kim, “Precision dynamics, stochastic modeling, and multivariable control of planar magnetic levitator,” Proc. of the IEEE American Control Conference, Vol. 6, pp.4940 –4945, May 2002.
[19] Products P-752, Physik Instrumente Product Catalog, 2006.
[20] K. Halbach, “Design of permanent multipole magnets with oriented rare earth cobalt material,” Nucl. Instrum. Methods, Vol. 169, No. 1, pp.1-10, 1980.
[21] D. L. Trumper, M. C. Weng, and R. J. Ritter, “Magnetic suspension and vibration control of beams for non-contact processing,” Proc. of the IEEE Int. Conf. on Control Applications, Vol. 1, pp.551–557, Aug 1999.
[22] F. Auer and H. F. van Beek, “Practical application of a magnetic bearing and linear propulsion unit for six degrees of freedom positioning,” Proc. of 4th Int. Symp. on Magnetic Bearings, pp.183–188, 1994.
[23] L. Molenaar, “A Novel Planar Magnetic Bearing and Motor Configuration Applied in a Positioning Stage,” PhD thesis, Delft University of Technology, 2000.
[24] X. Shan, S. K. Kuo, J. Zhang, and C. H. Menq, “Uulra precision motion control of a multiple degrees of freedom magnetic suspension stage,” IEEE/ASME Trans. on Mechatronics, Vol. 7, No. 1, pp.67-78, Mar. 2002.
[25] S. K. Kuo, and C. H. Menq, “Modeling and control of a six-axis precision motion control stage,” IEEE/ASME Trans. on Mechatronics, Vol. 10, No. 1, pp.50-59, Feb. 2005.
[26] S. Verma, W. J. Kim, and J. Gu, “Six-axis nanopositioning device with precision magnetic levitation technology,” IEEE/ASME Trans. on Mechatronics, Vol. 9, No. 2, June 2004.
[27] S. Verma, W. J. Kim, and H. Shakir, “Multi-axis maglev nanopositioner for precision manufacturing and manipulation applications,” IEEE/ASME Trans. on Industry Applications, Vol. 41, No. 5, Sep./Oct. 2005.
[28] 吳坤男, “Integrated Design and Control of a Magnetically Levitated Guiding System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 1997.
[29] 王銘智, “Model and Controller Design of a Maglev Guiding System for Application in Precision Positioning.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 1998.
[30] 黃心威, “Modeling and Controller Design of a Dual-Axis Maglev System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 1999.
[31] 王晉中, “A Dual-Axis Maglev Positioning System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2000.
[32] 許銘全, “Design, and Control of a Novel Planar Maglev Positioning System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2001.
[33] 黃馨廣, “Design, Control, and Experiment of a Novel Precise Maglev Positioning System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2002.
[34] 林佐柏, “Design, Control, and Experiment of a Novel Planar Maglev Positioning System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2003.
[35] 蔡嘉峰, “Integrated Design and Control to Improve Robustness and Upgrade Positioning Precision on a Planar Maglev System.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2004.
[36] J. H. Zhang and C. H. Menq, “A linear/angular interferometer capable of measuring large angular motion,” Meas. Sci. Technol., No. 10, pp.1247–1253, 1999.
[37] M. Holmes, R. Hocken, and D. Trumper, “The long-range scanning stage: a novel platform for scanned-probe microscopy,” Journal of the International Societies for Precision Engineering and Nanotechnology, pp.191-209, 2000.
[38] H. A. Haus and J. R. Melcher, “Electromagnetic Fields and Energy,” Inc. 1996.
[39] R. C. Hibbeler, “Mechanics of Materials,” Fourth edition, Prentice Hall, 2000.
[40] Products P-280 and P-762, Physik Instrumente Product Catalog, 2001, MicroPostioning, NanaoPositioning, NanoAutomation: Solutions for Cutting-Edge Technologies.
[41] F. L. Fischer, 1981, “Symmetrical 3 DOF Compliance Structure,” US Patent 4447048.
[42] A. R. Smith, S. Gwo, and C. K. Shih, “A new high resolution two-dimensional micropositioning device for scanning probe microscopy”, Review of Scientific Instruments, Vol. 64, No. 10, pp.3216-3219, 1994.
[43] N. G. Dagalakis, J. A. Kramer, E. Amatucci, R. Bunch, “Kinematic modeling and analysis of planer micro-positioner,” Proc. of ASPE Annual Meeting, pp.135-138, 2001.
[44] “Agilent Technologies NanoStepper,” MIT Technology Review, pp.14, June 2003.
[45] J. G. Bednorz et al., 1985, “Piezoelectric XY Positioner,” US Patent 452 0570.
[46] 黃宣翰, “Design and Implementation of a New 3-DOF Electromagnetic- Nanopositioner Utilizing Flexure Mechanism.” Master thesis. The National Taiwan University, Taiwan, R.O.C., 2005.
[47] J. W. Ryu, D. G. Gweon, and K. S. Moon., “Optimal design of a flexure hinge based X-Y-θwafer stage”, Journal of Precision Engineering, Vol. 21, No.1, pp. 18-28, 1997.
[48] T. B. Eom and J. Y. Kim, “Long range stage for the metrological atomic force microscope”, Proc. of ASPE 2001 Annual Meeting, pp.156-159, 2001.
[49] Kanai et al, “An elastic fine positioning mechanism applied to contactless X-Y table,” Bulletin of JSPE, Vol. 17, No. 4, pp.265-266, 1983.
[50] J. N. Juang, “Applied System Identification,” Amazon.com, 1993.
[51] L. Ljung, “System identification : Theory for the user,” Upper Saddle River, NJ : PTR Prentice Hall, 2nd edition, 1999.
[52] B. H. Tongue, “Principles of Vibration,” 2nd edition, Oxford.
[53] G. R. Duan, Z. Y. Wu, C. Bingham, and D. Howe, “Robust magnetic bearing control using stabilizing dynamical compensators,” IEEE Trans. on Industry Applications, Vol. 36, No. 6, Nov./Dec. 2000.
[54] G. R. Duan and D. Howe, “Robust magnetic bearing control via eigenstructure assignment dynamical compensation,” IEEE Trans. on Control Systems Technology, Vol. 11, No. 2, Mar. 2003.
[55] Y. K. Kim and Y. Park, Corrections to “Robust control for linear discrete-time systems with norm-bounded nonlinear uncertainties,” IEEE Trans. on Automatic Control, Vol. 48, No. 8, Aug. 2003.
[56] J. D. Lindlar and C. R. Knospe, “Feedback linearization of an active magnetic bearing with voltage control,” IEEE Trans. on Control Systems Technology, Vol. 10, No. 1, Jan. 2002.
[57] T. Tsujino, K. I. Nakashima, and T. Fujii, “Application of control and closed loop identification to a magnetic levitation system,” AJC, Vol. 4, No. 4, pp.283-296, Dec. 1999.
[58] O. S. Kim, S. H. Lee, and D. C. Han, “Positioning performance and straightness error compensation of the magnetic levitation stage supported by the linear magnetic bearing,” IEEE Trans. on Industry Electronics, Vol. 50, No. 2, pp.374-378, Apr. 2003.
[59] Y. Xia, and U. Jia, “Robust sliding-mode control for uncertain time-delay systems: An LMI approach,” IEEE Trans. on Automatic Control, Vol. 48, No. 6, pp.1086-1091, June 2003.
[60] T. Maruicia, S. R. Hebertt, and E. Gerardo, “Sliding mode nonlinear control of magnetic bearings,” Proc. of the IEEE Int. Conf. on Control Applications, Vol. 1, pp.743-748, Aug. 1999.
[61] S. L. Edmonds and J. K. Pieper, “Discrete sliding mode control of magnetic bearings,” Proc. of the IEEE Int. Conf. on Control Applications, pp.658-663, Sep. 2000.
[62] C. C. Wang, M.Y. Chen, and L. C. Fu, ”Adaptive sliding mode controller design of a Maglev guiding system for application in precision positioning,” Proc. of the IEEE American Control Conference, Vol. 3, pp.1612-1616, June 2000.
[63] S. K. Hong and R. Langari, “Robust fuzzy control of a magnetic bearing system subject to harmonic disturbances,” IEEE Trans. on Control Systems Technology, Vol. 8, No. 2, pp.366-371, Mar. 2000.
[64] Y. C. Chang, “A robust tracking control for chaotic Chua’s circuits via fuzzy approach,” IEEE Trans. on Circuits System I, Vol. 48, No. 7, July 2001.
[65] K. S. Kim, and Y. Kim, “Robust backstepping control for slew maneuver using nonlinear tracking function,” IEEE Trans. on Control Systems Technology, Vol. 11, No. 6, pp.822-829, Nov. 2003.
[66] K. S. Narendra and A. M. Annaswamy, “Robust adaptive control in the presence of bounded disturbances,” IEEE Trans. on Automatic Control, Vol. 31, No. 4, pp.306-215, Apr. 1986.
[67] Y. Liu and X. Y. Li, “Robust adaptive control of nonlinear systems represented by input- output models,” IEEE Trans. on Automatic Control, Vol. 48, No. 6, pp.1041-1045, June 2003.
[68] Z. Qu, “Adaptive and robust controls of uncertain systems with nonlinear parameterization,” IEEE Trans. on Automatic Control, Vol. 48, No. 10, pp.1817-1824, Oct. 2003.
[69] S. S. Ge and J. Wang, “Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients,” IEEE Trans. on Automatic Control, Vol. 48, No. 8, pp.1463-1469, Aug. 2003.
[70] B. Fidan, Y. Zhang, P. A. Ioannou, “Adaptive control of a class of slowly time varying systems with modeling uncertainties,” IEEE Trans. on Automatic Control, Vol. 50, No. 6, pp.915-920, June 2005.
[71] J. J. E. Slotine, Weiping Li, “Applied Nonlinear Control,” Prentice Hall, 1990.
[72] P. A. Ioannou, and J.Sun, “Robust Adaptive Control,” Prentice Hall, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33520-
dc.description.abstract本論文提出一種新型、長行程、六自由度運動的精密定位平臺,用於長行程與精密定位之雙重需求的應用範疇。在本論文中,對於硬體機構設計、電磁致動器設計以及高效能的控制器設計都有完整的介紹。平臺主體係採用一體成型之平行撓摺式機構作為無乾摩擦力的導引機構;致動器系統採用各四組水平與垂直方向之電磁致動器來驅動平臺以達成六自由度運動;量測系統則是採用六組高精度光學位移量測器作為平臺位置訊號之回授。此定位系統期望達成三大目標:第一、擁有長行程的移動能力(此指公厘的範疇);第二、高精密定位的能力;最後,達到快速反應的需求。
本論文所設計的平臺之最大行程可達2mm×2mm×0.5mm,且定位解析度為10μm,平臺整體尺寸為150mm×150mm×20mm。在此系統中,共有八組永久磁鐵黏附在可移動的載台上,以及相對應的八個電磁鐵安裝在固定的基座上。本論文之整體控制架構描述如下:首先,利用六個位移量測器可得知平臺姿態資訊,再藉由調整電磁鐵的電流值以達到控制平臺六自由度姿態運動之目標。再者,在本論文中,為滿足系統強健性及穩定性之雙重目的,並確保定位及追蹤時平臺之六自由度運動皆能符合系統性能之要求,我們提出具強健適應性之可適性滑動模式控制器,在系統參數變化以及外在雜訊干擾之不確定因素下,能順利達成系統之控制目標。經由一連串令人滿意的模擬與實驗結果中,可以證實本論文所設計之六自由度精密定位平臺可以達成長行程、高精度以及低成本之目標。
zh_TW
dc.description.abstractA novel, six degree-of-freedom (DOF) compact positioner with large travel range and high resolution is proposed for precise positioning application. The precise positioner is composed of monolithic parallel flexure mechanism, horizontal and vertical electromagnetic actuators, and optical displacement sensors to achieve the 6-DOF motion. The concept of the system intends to achieve three goals: 1) large travel range, 2) high precision positioning, and 3) fast response. In our system, there are eight sets of permanent magnets attached to the moving platform, and eight sets of electromagnets mounted on the bottom platen. The whole control architecture is to take the six posture data measured by the six optical displacement sensors first and then to control the 6-DOF motion by regulating the current in the electromagnetic actuators. For the purpose of system robustness and stability, an adaptive sliding-mode controller is proposed to validate the system performance. The developed robust adaptive control architecture consists of two components: 1) sliding mode controller, 2) adaptive law. From the simulation and experimental results, satisfactory performances of the hereby developed system, including stiffness and precision, have been successfully demonstrated.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:45:06Z (GMT). No. of bitstreams: 1
ntu-95-R93921002-1.pdf: 2993923 bytes, checksum: 2097f5918861d05fb183864edf86ce2c (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsTable of Contents
摘要 I
ABSTRACT II
TABLE OF CONTENTS III
CHAPTER 1 1
INTRODUCTION 1
1.1 MOTIVATION AND GOAL. 1
1.2 SURVEY ON THE 6-DOF POSITIONING SYSTEM 3
1.2.1 MECHANISMS FOR PRECISION POSITIONING DEVICE 4
1.2.2 ACTUATING SYSTEMS COMPARISONS 8
1.2.3 SENSING SYSTEM COMPARISONS 12
1.3 TARGET APPLICATION. 13
1.4 CONTRIBUTIONS 14
1.5 THESIS ORGANIZATION 15
CHAPTER 2 17
PRELIMINARIES 17
2.1 BASIC THEORIES OF ELECTROMAGNETICS 17
2.1.1 LORENTZ FORCE PRINCIPLE 17
2.1.2 THE VECTOR POTENTIAL AND VECTOR POISSON EQUATION 19
2.1.3 SUPERPOSITION INTEGRAL OF THE BIOT-SAVART LAW 23
2.1.4 THE SCALAR MAGNETIC POTENTIAL 26
2.2 PROPERTIES OF PERMANENT MAGNETS 27
2.3 MAGNETIC FIELD GENERATION 31
2.3.1 MAGNETIC FIELD DUE TO CURRENT-CARRYING STRAIGHT WIRE 32
2.3.2 MAGNETIC FIELD DUE TO CYLINDRICAL ELECTROMAGNET 34
2.4 BASIC THEOREMS OF ENERGY METHOD 36
2.4.1 EXTERNAL WORK AND STRAIN ENERGY 36
2.4.2 STRAIN ENERGY FOR BENDING MOMENT 37
2.4.3 CASTIGIANO’S THEOREM 38
CHAPTER 3 41
DESIGN CONCEPTS 41
3.1. DESIGN STRATEGIES 41
3.1.1 HIGH POSITIONING ACCURACY 42
3.1.2 LARGE TRAVEL RANGE 43
3.1.3 FAST RESPONSE 44
3.1.4 COMPACT SYSTEM 44
3.2 XYZ –DIM FLEXURE MECHANISM 45
3.2.1 FLEXURES 45
3.2.2 FLEXURE TYPES 46
3.2.3 XYZ FLEXURE MECHANISMS 54
3.3 ELECTROMAGNETIC ACTUATOR 56
3.3.1 VOICE COIL MOTOR. 56
3.3.2 VCM-LIKE ELECTROMAGNETIC ACTUATOR 57
3.3.3 REPULSIVE ELECTROMAGNETIC ACTUATOR 59
3.4 MEASURING SYSTEM 61
3.5 A NOVEL INTEGRATED POSITIONER 62
CHAPTER 4 65
MODELING AND SYSTEM IDENTIFICATION 65
4.1 FORCE REPRESENTATION AND ALLOCATION 66
4.1.1 FORCE CHARACTERISTICS OF THE ELECTROMAGNETIC ACTUATOR 66
4.1.2 FORCE LINEAR FORMULATION 73
4.1.3 FORCE ALLOCATION 74
4.2 SENSING METHODOLOGY 76
4.3 DYNAMIC FORMULATION 80
4.4 SYSTEM IDENTIFICATION 85
CHAPTER 5 93
CONTROLLER DESIGN 93
5.1. ADAPTIVE SLIDING-MODE CONTROLLER DESIGN 94
5.1.1 SLIDING SURFACE 98
5.1.2 CONTROLLER FORMULATION 99
5.1.3 STABILITY ANALYSIS 100
5.2. NUMERICAL SIMULATION RESULTS 104
CHAPTER 6 109
EXPERIMENTAL RESULTS 109
6.1. HARDWARE SETUP AND EXPERIMENTAL ENVIRONMENT 109
6.2. EXPERIMENTAL RESULTS AND DISCUSSIONS 112
6.2.1 REGULATION RESPONSE 112
6.2.2 LARGE MOVING RANGE 114
6.2.3 STEP TRAIN RESPONSE 116
6.2.4 SINUSOIDAL MOTION 117
6.2.5 CIRCLING MOTION 119
6.2.6 ROTATION MOTION 120
CHAPTER 7 123
CONCLUSIONS 123
REFERENCES 125
dc.language.isozh-TW
dc.subject精密定位zh_TW
dc.subject可適性滑動模式控制器zh_TW
dc.subject電磁致動器zh_TW
dc.subject平行撓摺式機構zh_TW
dc.subject六自由度定位器zh_TW
dc.subjectParallel flexure mechanismen
dc.subjectElectromagnetic actuatorsen
dc.subjectAdaptive sliding-mode controlleren
dc.subjectPrecision positioningen
dc.subject6-DOF positioneren
dc.title以撓褶式機構實現之新型六自由度電磁致動精密定位平臺zh_TW
dc.titleA Novel 6-DOF Electromagnetic Precision Positioner Utilizing Flexure Mechanismen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor陳美勇(Mei-Yung Chen)
dc.contributor.oralexamcommittee陳博現(Bor-Sen Chen),顏家鈺(Jia-Yush Yen),陳永耀(Yung-Yaw Chen)
dc.subject.keyword平行撓摺式機構,電磁致動器,可適性滑動模式控制器,精密定位,六自由度定位器,zh_TW
dc.subject.keywordParallel flexure mechanism,Electromagnetic actuators,Adaptive sliding-mode controller,Precision positioning,6-DOF positioner,en
dc.relation.page133
dc.rights.note有償授權
dc.date.accepted2006-07-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
2.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved