Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33511
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor貝蘇章
dc.contributor.authorShih-Chian Linen
dc.contributor.author林事乾zh_TW
dc.date.accessioned2021-06-13T04:44:35Z-
dc.date.available2008-07-27
dc.date.copyright2006-07-27
dc.date.issued2006
dc.date.submitted2006-07-17
dc.identifier.citation[1] M, Akay, “Time frequency and wavelets in biomedical signal processing”, IEEE Press, 1998.
[2] A. W. Rihaczek, “Signal Energy Distribution in Time and Frequency”, IEEE Transactions on Information Theorem, Vol. IT-14, No.3, pp. 369-374, 1968.
[3] T.A.C.M. Classen and W.F.G. Mecklenbrauker, “The Wigner distribution – A
tool for time-frequency signal analysis: Part 1: Continuous time signals”,
Philips J. Res., Vol. 35, 1980, pp. 217-250.
[4] F. Hlawatsch, G.F. Boudreaux-Bartels, “Linear and quadratic time-frequency signal representations”, IEEE Signal Proc. Mag., vol 9, April 1992. –P. 21-67.
[5] S.M. Marple, “Digital spectral analysis with applications”, Prentice-Hall, 1987.
[6] N. N. Brueller, N. Peterfreund and M. Porat, “Optimal Non-uniform Sampling
and Instantaneous Bandwidth Estimation”, Proc. Of the IEEE-SP International
Symposium on Time-Frequency and Time-Scale Analysis, Pittsburgh, USA, 6-9
Oct 1998. –P. 21-67.
[7] K. Horiuchi, “Sampling Principle for Continuous Signals with Time-Varying Bands”, Information and Control, vol. 13, pp. 53-61, 1968.
[8] A. J. Jerri, “The Shannon sampling theorem-Its various extensions and applications: A tutorial review”, Proc. IEEE, vol. 65, pp. 1565-1596, Nov. 1977.
[9] D. Gabor, “Theory of communication,” J. IEE (London), vol. 93, pp. 429-457,
1946.
[10] A. Francos and M. Porat, “Parametric Estimation of multicomponent Signals using Minimum Cross Entropy Time-Frequency Distributions”, Proceedings of IEEE International symposium on Time-Frequency and Time-Scale Analysis, pp. 321-324, Paris, France, 1996.
[11] R. Vio, W. Wamsteker, “Joint Time-Frequency Analysis: A tool for exploratory analysis and filtering of non-stationary time series”, Astron. Astrophys. 388, 1124 (2002)
[12] M. A. Poletti “The Development of Instantaneous Bandwidth via Local Signal Expansion”, Signal Processing, Vol. 31, pp. 273-281, 1993.
[13] L. Cohen, “Time-Frequency distributions – A review”, Proc. IEEE, Vol. 77, No. 7, July 1989, pp. 941-981.
[14] J. J. Clark, M. R. Palmer and P. D. Lawrence, “A Transformation Method for the reconstruction of Functions from Non-uniformly Spaced samples”, IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-33, No. 4, pp. 1151-1165, 1985.
[15] M. Greitāns, “Advanced Processing of Non-uniformly Sampled Non-Stationary Signals”, Electronics and Electrical Engineering.–Kaunas: Technologija, 2005. – No. 3(59). – P. 42–45.
[16] L. Cohen and C. Lee, “Instantaneous bandwidth for signals and spectrogram”,
IEEE Internat. Conf. Acoust. Speech Signal Process., 1990, pp.2451-2454.
[17] L. Cohen and C. Lee, “Instantaneous mean quantities in time-frequency
analysis”, IEEE Internat. Conf. Acoust. Speech Signal Process., 1988, pp. 2188-2191.
[18] L. Cohen, “Local bandwidth and optimal windows for the short-time Fourier Transform”, Proc. SPIE Adv. Signal Process. IV, vol. 1152, pp. 401-425.
[19] C. K. Chui, “Wavelet Analysis and its Applications”, Boston, MA: Academic Press, 1992.
[20] A. Papoulis, “Error analysis in sampling theory”, Proc. of the IEEE, vol. 54, pp. 947-955, 1966
[21] L. Cohen and C. Lee, “Instantaneous frequency, its standard deviation and Multi-component signals”, Proc. SPIE, Vol. 1975, 1988, pp. 186-208.
[22] L. Cohen, “Time-Frequency Analysis”, Englewood Cliffs, NJ: Prentice-Hall, 1995.
[23] L. Cohen, “Standard deviation of instantaneous frequency”, in Proc. ICASSP, vol. 4, 1989, pp. 2238-2241.
[24] Y. Y. Zeevi and E. Shlomot, “Non-uniform Sampling and Anti-Aliasing in Image Representation”, IEEE Trans. On Signal Processing, vol. 41, pp. 1223-1236, 1993.
[25] S. Urieli, M. Porat and N. Cohen, “Optimal Reconstruction of Images from Localized Phase”, IEEE Trans. On Image Processing, vol. 7, No. 6, pp. 838-853, 1998.
[26] M. Porat and G. Shachor, “Signal Representation in the combined Phase-Spatial space: Reconstruction and Criteria for Uniqueness”, IEEE Trans. On Signal Processing, vol. 47, No. 6, pp. 1701-1707, 1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33511-
dc.description.abstract利用信號的非均勻取樣點來重建它,在很多應用上是個重要的議題,尤其是在處理非頻帶限制(non-band-limited)的信號。我們引用Brueller et al. [6] 所提出之疊代演算法,對信號做時頻分析並有效地估測其瞬時頻寬,進而利用此結果,在使原信號變成頻帶限制的情況下,計算出時間軸的變形函數,並可重組原信號。根據這技術,此變形函數是累加的,每次疊代以補償和前一次的瞬時頻寬之不同為目標,最後這演算法會收斂並且在變形的時間軸上得到一個固定的瞬時頻寬。而此法在觀念上是最佳,因為它是利用最小取樣率來正確地重建信號,即在含有低頻成份的區域,則用較小的取樣密度,反之亦然。zh_TW
dc.description.abstractIn many applications, it is an important task to reconstruct a signal from their samples at non-uniformly distributed instants, especially in processing a non-band-limited signal. We refer to an iterative algorithm proposed by Brueller et al. [6]. This method is based on time-frequency analysis to availably estimate instantaneous bandwidth, further uses the result to calculate the time-distortion function, under which the original signal becomes band-limited and thus can be reconstructed. According to this approach, the time-distortion function is accumulated, and each iteration is aimed at compensating for differences in the instantaneous bandwidth after previous iteration. The final results of this algorithm converge to a constant instantaneous bandwidth over the distorted time axis. This method is optimal in the sense that it requires the minimal sampling rate for correct reconstruction of the signal. In other hand, it needs lower sampling density in the regions where there are low frequency components than in the other regions where there are higher frequency components and vice versa.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:44:35Z (GMT). No. of bitstreams: 1
ntu-95-R93942038-1.pdf: 5731145 bytes, checksum: 5872330b9be0759988a165d6d46482a0 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsChapter 1 Introduction ……………………………… 1
Chapter 2 Sampling Theorem ……...……………….. 5
2-1 Introduction………………………………………………………………….5
2-2 Sampling Theorem…………………………………………………………..6
2-3 Time-Distortion Function…………………………………………………..10
2-4 Conclusion……………………………….…………………………………11
Chapter 3 Spectrum Estimation …………………....13
3-1 Introduction………………………………………………………….……..13
3-2 Limits of the typical Fourier Transform……………………………………14
3-3 Typical Time-Frequency Representations………………………………….17
3-4 Instantaneous Bandwidth…………………………………………………..24
3-5 Conclusion………………………………………………………………….26
Chapter 4 The Iterative Algorithm .……………….. 27
4-1 Introduction………………………………………………………………..27
4-2 Algorithm…………………………………………………………………..28
4-3 Error Analysis……………………………………………………………...31

Chapter 5 Experiment ……………..……………..... 33
5-1 Introduction………………………………………………………………..33
5-2 Example 1: A Cosine Wave of a Step Frequency………………………….34
5-3 Example 2: A FM signal…………………………………………………..,43
5-4 Example 3: An Audio signal……………………………………………….51
5-5 Conclusion…………………………………………………………………56
Chapter 6 Conclusion and Feature Work ……........ 59
6-1 Conclusion………………………………………………………………....59
6-2 Feature Work……………………………………………………………....60
Reference ……............................................................. 61
dc.language.isoen
dc.subject信號重建zh_TW
dc.subject非均勻取樣zh_TW
dc.subjectSignal Reconstructionen
dc.subjectNon-uniform sampling Theoryen
dc.title利用非均勻取樣不穩定信號並重建zh_TW
dc.titleReconstruction of Non-uniformly Sampled Non-stationary Signalsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐忠枝,張豫虎,林家平
dc.subject.keyword非均勻取樣,信號重建,zh_TW
dc.subject.keywordNon-uniform sampling Theory,Signal Reconstruction,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2006-07-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
5.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved