請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33495
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 胡文聰 | |
dc.contributor.author | Wei-Yuan Ma | en |
dc.contributor.author | 馬維遠 | zh_TW |
dc.date.accessioned | 2021-06-13T04:43:43Z | - |
dc.date.available | 2016-08-01 | |
dc.date.copyright | 2011-08-01 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-27 | |
dc.identifier.citation | [1]H. Becker and C. Gartner, “Polymer icrofabrication methods for microfluidic analytical applications,” Electrophoresis, vol. 21, pp. 12-26, Jan 2000.
[2] M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, “An integrated nanoliter DNA analysis device,” Science, vol. 282, pp. 484-487, Oct 1998. [3] J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis, vol. 21, pp. 27-40, Jan 2000. [4] H. A. Stone, A. D. Stroock, and A. Ajdari, “Engineering flows in small devices: Microfluidics toward a lab-on-a-chip,” Annual Review of Fluid Mechanics, vol. 36, pp. 381-411, 2004. [5] D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annual Review of Biomedical Engineering, vol. 4, pp. 261-286, 2002. [6] G. M. Whitesides, E. Ostuni, S. Takayama, X. Y. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annual Review of Biomedical Engineering, vol. 3, pp. 335-373, 2001. [7] S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U. J. Balis, R. G. Tompkins, D. A. Haber, and M. Toner, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature, vol. 450, pp. 1235-U10, Dec 2007. [8] B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab on a Chip, vol. 5, pp. 401-406, 2005. [9] Y. C. Toh, T. C. Lim, D. Tai, G. Xiao, D. V. Noort and H. Yu, “ A microfluidic 3D hepatocyte chip for drug toxicity testing, ” Lab on a Chip, 2009, vol. 9, 2026-2035. [10] C. M. Lin, Y. S. Lai, H. P. Liu, C. Y. Chen and A. M. Wo, “ Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications, ”Analytical Chemistry, 2008, vol. 80, 8937-8945. [11] N. Manaresi, A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni and R. Guerrieri, “A CMOS chip for individual cell manipulationand detection, ”IEEE Journal of Solid-State Circuits, 2003, 38, 2297-2305. [12] B. S. Cho, T. G. Schuster, X. Y. Zhu, D. Chang, G. D. Smith, and S. Takayama, “Passively driven integrated microfluidic system for separation of motile sperm,” Analytical Chemistry, vol. 75, pp. 1671-1675, Apr 2003. [13] S. Koyama, D. Amarie, H. A. Soini, M. V. Novotny, and S. C. Jacobson, “Chemotaxis assays of mouse sperm on microfluidic devices,” Analytical Chemistry, vol. 78, pp. 3354-3359, May 2006. [14] M. D. C. Lopez-Garcia, R. L. Monson, K. Haubert, M. B. Wheeler, and D. J. Beebe, “Sperm motion in a microfluidic fertilization device,” Biomedical Microdevices, vol. 10, pp. 709-718, Oct 2008. [15] G. D. Smith and S. Takayama, “ Gamete and embryoisolationand culture with microfluidics,”Theriogenology, 2007, vol. 68, S190-S195. [16]R.S.Suh, Takayama and G. D. Smith, “Microfluidicapplications for andrology,”J. Androl., 2005, vol. 26, 664-670. [17]R.S. Suh, X. Y. Zhu, N. Phadke, D. A. Ohl, S. Takayama and G. D. Smith, “ IVF within microfluidic channels requires ower total numbers and lower concentrations of sperm, ” Human Reproduction, 2006, vol. 21, 477-483. [18] L. J. Kricka, I. Faro, S. Heyner, W. T. Garside, G. Fitzpatrick, G. McKinnon, J. Ho and P. Wilding, “ Micromachined analytical devices: microchips for semen testing,” Journal of Pharmaceutical and Biomedical Analysis, 1997,vol.15, 1443-1447. [19] L. J. Kricka, O. Nozaki, S. Heyner, W. T. Garside and P. Wilding, “Application of a microfabricated device for evaluating sperm function, ” Clinical Chemistry, 1993, vol.39, 1944-1947. [20] M. C. McCormack, S. McCallum and B. Behr, “A novel microfluidic device for male subfertility screening J. Urol., 2006,vol. 175, 2223-2227. [21] K. M. Horsman, S. L. R. Barker, J. P. Ferrance, K. A. Forrest, K. A. Koen, and J. P. Landers, “Separation of sperm and epithelial cells in a microfabricated device: Potential application to forensic analysis of sexual assault evidence,” Analytical Chemistry, vol. 77, pp. 742-749, Feb 2005. [22] T. G. Schuster, B. S. Cho, L. M. Keller, S. Takayama and G. D. Smith, “Isolation of motile spermatozoa from semen samples using microfluidics. Reproductive BioMedicine Online, ” 2003, 7, 75-81. [23] D. B. Seo, Y. Agca, Z. C. Feng and J. K. Critser, “Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure,” Microfluidics and Nanofluidics, 2007,vol. 3, 561-570. [24] B. Shao, L. Z. Shi, J. M. Nascimento, E. L. Botvinick, M. Ozkan, M. W. Berns and S. C. Esener, Biomedical Microdevices, “High-throughput sorting and analysis of human sperm with a ring-shaped laser trap,” 2007, vol.9, 361-369. [25] J. M. Wu, Y. K. Chung, K. J. Belford, G. D. Smith, S. Takayama and J. Lahann,“A surface-modified sperm sorting device with long-term stability,”Biomedical Microdevices, 2006, vol.8, 99-107. [26] G. Palermo, H. Joris, P. Devroey, and A. C. Vansteirteghem, “Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte,” Lancet, vol. 340, pp. 17-18, Jul 1992. [27] S. Smith, S. Hosid, and L. Scott, “Use of postseparation sperm parameters to determine the method of choice for sperm preparation for assisted reproductive technology,” Fertility and Sterility, vol. 63, pp. 591-597, Mar 1995. [28] C. Ainsworth, B. Nixon, and R. J. Aitken, “Development of a novel electrophoretic system for the isolation of human spermatozoa,” Human Reproduction, vol. 20, pp. 2261-2270, Aug 2005. [29] S. Koyama, D. Amarie, H. A. Soini, M. V. Novotny, and S. C. Jacobson, “Chemotaxis assays of mouse sperm on microfluidic devices,” Analytical Chemistry, vol. 78, pp. 3354-3359, May 2006. [30] R. J. Aitken, “Sperm separation techniques,” International Journal of Andrology, vol. 10, pp. 643-645, Oct 1987. [31] K. M. Horsman, S. L. R. Barker, J. P. Ferrance, K. A. Forrest, K. A. Koen, and J. P. Landers, “Separation of sperm and epithelial cells in a microfabricated device: Potential application to forensic analysis of sexual assault evidence,” Analytical Chemistry, vol. 77, pp. 742-749, Feb 2005. [32] M. Manger, H. Bostedt, W. B. Schill, and A. J. Mileham, “Effect of sperm motility on separation of bovine X- and Y-bearing spermatozoa by means of free-flow electrophoresis,” Andrologia, vol. 29, pp. 9-15, 1997. [33] D. B. Seo, Y. Agca, Z. C. Feng, and J. K. Critser, “Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure,” Microfluidics and Nanofluidics, vol. 3, pp. 561-570, Oct 2007. [34] M. D. C. Lopez-Garcia, R. L. Monson, K. Haubert, M. B. Wheeler, and D. J. Beebe, “Sperm motion in a microfluidic fertilization device,” Biomedical Microdevices, vol. 10, pp. 709-718, Oct 2008. [35] D. Beebe, M. Wheeler, H. Zeringue, E. Walters, and S. Raty, “Microfluidic technology for assisted reproduction,” 2002, pp. 125-135. [36] R. J. Aitken and J. S. Clarkson, “Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human-spermatozoa,” Journal of Reproduction and Fertility, vol. 81, pp. 459-469, Nov 1987. [37] S. E. M. Lewis, P. M. Boyle, K. A. McKinney, I. S. Young, and W. Thompson, “Total antioxidant capacity of seminal plasma is different in fertile and infertile men,” Fertility and Sterility, vol. 64, pp. 868-870, Oct 1995. [38] M. C. Ou, H. T. Ng, B. N. Chiang, C. Y. Hong, and C. T. Hsu, “A motile human sperm head fixation method,” Andrologia, vol. 25, pp. 67-70, Mar-Apr 1993. [39] D. T. Stephens, T. S. Acott, and D. D. Hoskins, “A cautionary note on the determination of forward motility protein-activity with bovine epididymal spermatozoa,” Biology of Reproduction, vol. 25, pp. 945-949, 1981. [40] N. Fukuda, K. Yomogida, M. Okabe, and K. Touhara, “Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility,” Journal of Cell Science, vol. 117, pp. 5835-5845, Nov 2004. [41] M. Spehr, G. Gisselmann, A. Poplawski, J. A. Riffell, C. H. Wetzel, R. K. Zimmer, and H. Hatt, “Identification of a testicular odorant receptor mediating human sperm chemotaxis,” Science, vol. 299, pp. 2054-2058, Mar 2003. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33495 | - |
dc.description.abstract | 體外受精技術(In Vitro Fertilization, IVF)以及單一精蟲微影注射(intracytoplasmic sperm injection)為現今最常使用的人工協助生殖科技,兩項技術都十分強調高品質精子細胞篩選的重要性。 然而,如何將高品質精子從精液當中篩選出來還是一個必須克服的問題。 因此,本研究提出了利用精子本身的運動特性及不同等級的泳動能力來做為高品質精子篩選的方法。精子本身具有泳動能力,佐以實驗證實了具有一定程度泳動能力的精子有朝著流場反方向逆游的特性。利用此一特殊現象以及搭配流道的設計,本生物晶片可直接從未經處理的精夜樣本將高泳動力精子從白血球、脂肪、無泳動力精子以及其他雜質當中篩選出來,並且在短時間之內篩選出大量的高泳動力精子細胞而不需要任何外接電路或是其他類似幫浦等儀器。
本研究利用靜水壓做為穩定的壓力驅動源,整個晶片僅包含了未經處理精液入口以及緩衝溶液入口,而高泳動力精子篩選流道中的流速精準控制在50μm/s,由於每個精子細胞的泳動力皆不同意即抵抗背景流速能力亦不同,而精子的泳動速度約在數微米到數十微米的範圍,如此一來50μm/s高流速流場的配置便可將具有高泳動力的精子分離出來,且佐以實驗證實此機制篩選出的精子活性比例接近百分之百。 此微小、可隨身攜帶、用完即丟的生物晶片可以協助簡化傳統精子篩選繁瑣的步驟並在短時間之內有效的將所需要的高泳動力京子篩選分離出來,以利IVF以及ICSI、或其他相關人工生殖技術的進行,滿足臨床上的需求。 | zh_TW |
dc.description.abstract | Assisted Reproductive Technology (ART), includes in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI), as the two most commonly used technologies to address infertility problems. These approaches reveal the fact that pre-selection of functional sperm is of prime importance to successful fertilization. However, one common obstacle for IVF and ICSI procedures is to select the most competent sperm population from a given semen sample. This thesis enhances motility-based sperm preparation to provide competent sperm for ART.
A high throughput microfuidic sperm sorting device that can efficiently separate motile sperms from nonmotile sperms and debris is proposed to fulfill a need in the clinical setting where small amount of qualified sperms need to be sorted. The device isolates motile sperm based on the motility, self-movement, and against-flow phenomenon of motile sperm in a geometrically constrained micro-scaled environment. More specifically, the microfuidic device introduces a flow field for sperms to swim against, and sperms that overcame the flow resistance within a few minutes are propelled along in the microchannels and migrated upstream to the collection region. Hundreds of microchannels are fabricated into the device with a view to increasing the throughput. Hydrostatic pressure was used as the steady driving source by controlling the height of water column to generate the flow field for testing sperm in motility. It has been proven that the hydrostatic pressure and against-flow phenomenon of motile sperm can be used to separating, aligning, and orienting sperm in a microchannel. This microfluidic device is simple to operate, portable and reusable. It can be integrated completely with observation, isolation, and classification of motile sperm in one chip without the need for external pumping system. The microdevice should be applicable to address clinical need of sperm classification and separation for ART. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:43:43Z (GMT). No. of bitstreams: 1 ntu-100-R98543070-1.pdf: 2811969 bytes, checksum: 83f3772a8bd9c86c290aaec69109762b (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 序言與謝辭 i
目錄 ii 圖表目錄 iii 中文摘要 iv Abstract v Chapter 1. Introduction 1 Chapter 2. Design of the microdevice 7 2.1. Configuration of microfluidic sperm sorting chip 7 2.1.1. Conceptual design of motile sperm sorting 7 2.1.2. Conceptual design of high-throughput sorting of motile sperms11 2.2. Microchannel design 13 2.3. Analysis of microfluidic system 16 2.3.1. Analysis of the flow field in the microchannel 16 2.3.2. Theoretical/Experimental water column heights for classifying flow field with different velocity 17 2.3.3. Flow consistency in each experiment 20 2.3.4. Steadiness of flow field 20 2.4. Characterization of sperm motion 21 2.4.1. Sperm motion in the microchannel 21 2.4.2. Interaction of motile sperm with flow 22 Chapter 3. Materials 24 3.1. Fabrication of the microfluidic chip 24 3.2. Semen and buffer preparation 27 3.3. Procedure for sorting and analysis of motile sperm 29 3.4. Visualization of flow field 32 Chapter 4. Results and Discussion 34 4.1. Sorted sperm quantity comparison with two benchmarks 34 4.2. Motile sperm percentage before and after sorting 36 4.3. Assessment of sperm motility before and after sorting 37 4.4. Assessment of sperm DNA fragmentation before/after sorting 40 Chapter 5. Conclusions 43 Reference 45 | |
dc.language.iso | en | |
dc.title | 應用於人工生殖技術之
高泳動力精蟲快速篩選晶片開發 | zh_TW |
dc.title | High Throughput Sorting of Motile Human Sperm via Microfluidic Device for Artificial Reproductive Technique | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝汝敦,張宏江,蔡芳生 | |
dc.subject.keyword | 人工生殖技術,泳動精蟲,精蟲篩選,微流體晶片,精蟲逆游, | zh_TW |
dc.subject.keyword | ART,motile sperm,sperm sorting microfluidic device,swim against flow, | en |
dc.relation.page | 52 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-27 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 2.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。