Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33379
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林亮音
dc.contributor.authorTsung-Chin Linen
dc.contributor.author林宗縉zh_TW
dc.date.accessioned2021-06-13T04:37:24Z-
dc.date.available2006-08-02
dc.date.copyright2006-08-02
dc.date.issued2006
dc.date.submitted2006-07-19
dc.identifier.citation1. McCulloch E. Stem cells in normal and leukemic hemopoiesis. Blood. 1983;62: 1-13.
2. Tenen DG. Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer 2003;3:89-101.
3. 何敏夫 (1998)。血液學 第二版。合記圖書出版社,台北市。
4. Kelly LM, Gilliland DG.. Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 2002;3:179-198.
5. Friedman AD, McKnight SL. Identification of two polypeptide segments of CCAAT/enhancer-binding protein required for transcriptional activation of the serum albumin gene. Genes Dev 1990;4:1416-1426.
6. Miller M, Shuman JD, Sebastian T, Dauter Z, Johnson PF. Structural basis for DNA recognition by the basic region leucine zipper transcriptiona factor CCAAT/enhancer-binding protein α. J Biol Chem 2003;278:15178-15184.
7. Keeshan K, Santilli G, Corradini F, Perrotti D, Calabretta B. Transcription activation function of C/EBPα is required for induction of granulocytic differentiation. Blood 2003;102:1267-1275.
8. Tavor S, Park DJ, Gery S, Vuong PT, Gombart AF, Koeffler HP. Restoration of C/EBPα expression in a BCR-ABL+ cell line induces terminal granulocytic differentiation. J Biol Chem 2003;278:52651-52659.
9. Cammenga J, Mulloy JC, Berguido FJ, MacGrogan D, Viale A, Nimer SD. Induction of C/EBPα activity alters gene expression and differentiation of human CD34+ cells. Blood 2003;101:2206-2214.
10. Pabst T, Mueller BU, Zhang P, Radomska HS, Narravula S, Schnittger S, Behre G, Hiddemann W, Tenen DG. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer-binding protein α (C/EBPα), in acute myeloid leukemia. Nat Genet 2001;27:263-270.
11. Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S, Thomas X, Raffoux E, Lamandin C, Castaigne S, Fenaux P, Dombret H; ALFA Group. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 2002;100:2717-2723.
12. Snaddon J, Smith ML, Neat M, Cambal-Parrales M, Dixon-McIver A, Arch R, Amess JA, Rohatiner AZ, Lister TA, Fitzgibbon J. Mutations of CEBPA in acute myeloid leukemia FAB types M1 and M2. Genes Chromosomes Cancer 2003;37:72-78.
13. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, Meijer J, van Oosterhoud S, van Putten WL, Valk PJ, Berna Beverloo H, Tenen DG, Lowenberg B, Delwel R. Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. Hematol J 2003;4:31-40.
14. Frohling S, Schlenk RF, Stolze I, Bihlmayr J, Benner A, Kreitmeier S, Tobis K, Dohner H, Dohner K. CEBPA mutation in younger adults with acute myeloid leukemia and normal cytigenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 2004;22:624-633.
15. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C. Proposed revised criteria for the classification of acute myeloid leukemia: a report of the French-American-British Cooperative Group. Ann Intern Med 1985;103:620-625.
16. Lin LI, Chen CY, Lin DT, Tsay W, Tang JL, Yeh YC, Shen HL, Su FH, Yao M, Huang SY, Tien HF. Characterization of CEBPA mutations in acute myeloid leukemia: most patients with CEBPA mutations have biallelic mutations and show a distinct immunophenotype of the leukemic cells. Clin Cancer Res 2005;11:1372-1379.
17. Dumbar TS, Gentry GA, Olson MO. Interaction of nucleolar phosphoprotein B23 with nucleic acids. Biochemistry 1989;28:9495-9501.
18. Borer RA, Lehner CF, Eppenberger HM, Nigg EA. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 1989;56:379-390.
19. Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK, Knudsen ES, Hofmann IA, Snyder JD, Bove KE, Fukasawa K. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 2000;103:127-140.
20. Bertwistle D, Sugimoto M, Sherr CJ. Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/ B23. Mol Cell Biol 2004;24:985-996.
21. Colombo E, Marine JC, Danovi D, Falini B, Pelicci PG. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 2002;4:529-533.
22. Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D, Laiho M. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 2004;5:465-475.
23. Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL, Look AT. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 1994;263:1281-1284.
24. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood 1996;87:882-886.
25. Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ, Carroll AJ, Morris SW. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene 1996;12:265-275.
26. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, La Starza R, Diverio D, Colombo E, Santucci A, Bigerna B, Pacini R, Pucciarini A, Liso A, Vignetti M, Fazi P, Meani N, Pettirossi V, Saglio G, Mandelli F, Lo-Coco F, Pelicci PG, Martelli MF; GIMEMA Acute Leukemia Working Party. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 2005;352:254-266.
27. Grisendi S, Pandolfi PP. NPM mutations in acute myelogenous leukemia. N Engl J Med 2005;352:291-292.
28. Chou WC, Tang JL, Lin LI, Yao M, Tsay W, Chen CY, Wu SJ, Huang CF, Chiou RJ, Tseng MH, Lin DT, Lin KH, Chen YC, Tien HF. Nucleophosmin mutations in de novo acute myeloid leukemia: age-dependent incidences and the stability during disease evolution. Cancer Res 2006;66:3310-3316.
29. Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF, Haferlach T, Hiddemann W, Falini B. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005 Dec;106:3733-3739.
30. Rosnet O, Buhring HJ, Marchetto S, Rappold I, Lavagna C, Sainty D, Arnoulet C, Chabannon C, Kanz L, Hannum C, Birnbaum D. Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia 1996;10:238-248.
31. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002;100:1532-1542.
32. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, Naoe T. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3 dependent cell lines. Oncogene 2000;19:624-631.
33. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, Akiyama H, Saito K, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Saito H, Ueda R, Ohno R, Naoe T. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001;97:2434-2439.
34. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, Naoe T. Tandemduplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 2000;19:624-631.
35. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Muller C, Gruning W, Kratz-Albers K, Serve S, Steur C, Buchner T, Kienast J, Kanakura Y, Berdel WE, Serve H. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood. 2000;96:3907-3914.
36. Cloos J, Goemans BF, Hess CJ, van Oostveen JW, Waisfisz Q, Corthals S, de Lange D, Boeckx N, Hahlen K, Reinhardt D, Creutzig U, Schuurhuis GJ, Zwaan CM, Kaspers GJ. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia, 27 April 2006 online published.
37. Stirewalt DL, Kopecky KJ, Meshinchi S, Engel JH, Pogosova-Agadjanyan EL, Linsley J, Slovak ML, Willman CL, Radich JP. Size of FLT3 internal tandem duplication has prognostic significance in patients with acute myeloid leukemia. Blood 2006;107:3724-3726.
38. Noguera NI, Ammatuna E, Zangrilli D, Lavorgna S, Divona M, Buccisano F, Amadori S, Mecucci C, Falini B, Lo-Coco F. Simultaneous detection of NPM1 and FLT3-ITD mutations by capillary electrophoresis in acute myeloid leukemia. Leukemia 2005;19:1479-1482.
39. Jilani I, Estey E, Manshuri T, Caligiuri M, Keating M, Giles F, Thomas D, Kantarjian H, Albitar M. Better detection of FLT3 internal tandem duplication using peripheral blood plasma DNA. Leukemia 2003;17:114-119.
40. Noguera NI, Ammatuna E, Zangrilli D, Lavorgna S, Divona M, Buccisano F, Amadori S, Mecucci C, Falini B, Lo-Coco F. Simultaneous detection of NPM1 and FLT3-ITD mutations by capillary electrophoresis in acute myeloid leukemia. Leukemia 2005;19:1479-1482.
41. Ammatuna E, Noguera NI, Zangrilli D, Curzi P, Panetta P, Bencivenga P, Amadori S, Federici G, Lo-Coco F. Rapid Detection of Nucleophosmin (NPM1) Mutations in Acute Myeloid Leukemia by Denaturing HPLC. Clin Chem 2005;51:2165-2167.
42. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, Rees J, Hann I, Stevens R, Burnett A, Goldstone A. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Mdical Research Council Adult and Children’s Leukemia Working Parties. Blood 1998;92:2322-2333.
43. Dohner K, Schlenk RF, Habdank M, Scholl C, Rucker FG, Corbacioglu A, Bullinger L, Frohling S, Dohner H. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 2005;106:3740-3746.
44. Frohling S, Schlenk RF, Krauter J, Thiede C, Ehninger G, Haase D, Harder L, Kreitmeier S, Scholl C, Caligiuri MA, Bloomfield CD, Dohner H, Dohner K. Acute myeloid leukemia with deletion 9q within a noncomplex karyotype is associated with CEBPA loss-of-function mutations. Genes Chromosomes Cancer 2005;42:427-432.
45. Gombart AF, Hofmann WK, Kawano S, Takeuchi S, Krug U, Kwok SH, Larsen RJ, Asou H, Miller CW, Hoelzer D, Koeffler HP. Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein α in myelodysplastic syndromes and acute myeloid leukemias. Blood 2002;99:1332-1340.
46. Tiesmeier J, Czwalinna A, Muller-Tidow C, Krauter J, Serve H, Heil G, Ganser A, Verbeek W. Evidence for allelic evolution of C/EBPalpha mutations in acute myeloid leukemia. Br J Haematol 2003;123:413-419.
47. Frohling S, Scholl C, Gilliland DG, Levine RL. Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol 2005;23:6285-6295.
48. Helbling D, Mueller BU, Timchenko NA, Hagemeijer A, Jotterand M, Meyer-Monard S, Lister A, Rowley JD, Huegli B, Fey MF, Pabst T. The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of Calreticulin. Proc Natl Acad Sci U S A. 2004;101:13312-13317.
49. Helbling D, Mueller BU, Timchenko NA, Schardt J, Eyer M, Betts DR, Jotterand M, Meyer-Monard S, Fey MF, Pabst T. CBFB-SMMHC is correlated with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML with inv(16). Blood 2005;106:1369-1375.
50. Zheng R, Friedman AD, Levis M, Li L, Weir EG, Small D. Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression. Blood 2004;103:1883-1890.
51. Grisendi S, Bernardi R, Rossi M, Cheng K, Khandker L, Manova K, Pandolfi PP. Role of nucleophosmin in embryonic development and tumorigenesis. Nature 2005;437:147-153.
52. Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, Uitterlinden AG, Erpelinck CA, Delwel R, Lowenberg B, Valk PJ. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 2005;106:3747-3754.
53. Reindl C, Bagrintseva K, Vempati S, Schnittger S, Ellwart JW, Wenig K, Hopfner KP, Hiddemann W, Spiekermann K. Point mutations in the juxtamembrane domain of FLT3 define a new class of activating mutations in AML. Blood 2006;107:3700-7.
54. Perrotti D, Marcucci G, Caligiuri MA. Loss of C/EBPα and favorable prognosis of acute myeloid leukemias: a biological paradox. J Clin Oncol 2004;22:582-584.
55. Falini B, Martelli MP, Bolli N, Bonasso R, Ghia E, Pallotta MT, Diverio D, Nicoletti I, Pacini R, Tabarrini A, Verducci Galletti B, Mannucci R, Roti G, Rosati R, Specchia G, Liso A, Tiacci E, Alcalay M, Luzi L, Volorio S, Bernard L, Guarini A, Amadori S, Mandelli F, Pane F, Lo Coco F, Saglio G, Pelicci PG, Martelli MF, Mecucci C. Immunohistochemistry predicts nucleophosmin (NPM) mutations in acute myeloid leukemia. Blood 2006 online published.
56. Smith LL, Pearce D, Smith ML, Jenner M, Lister TA, Bonnet D, Goff L, Fitzgibbon J. Development of a quantitative real-time polymerase chain reaction method for monitoring CEBPA mutations in normal karyotype acute myeloid leukaemia. Br J Haematol 2006;133:103-105.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33379-
dc.description.abstract急性骨髓性白血病 (Acute myeloid leukemia, AML)是由於造血前驅細胞發生突變,使得這些細胞無法分化為正常的顆粒性白血球(granulocyte),且會有不受控制地增生的現象。CEBPA突變、NPM突變及FLT3內源性串連複製突變(FLT3 internal tandem duplication, FLT3/ITD)是目前在AML最常被發現的三種基因變異,它們除了可以用於評估疾病的預後,也由於在發病與復發時的血癌細胞所偵測到的CEBPA突變或NPM突變類型是相同的,因此這兩種突變也適合用作監測微量腫瘤殘餘狀態(minimal residue disease, MRD)的生物標誌。
本研究發展出一套以多對引子聚合酶連鎖反應(Mutiplex PCR)搭配螢光片段毛細管電泳分析的方法,並對102個AML病人的CEBPA突變、NPM突變及FLT3/ITD進行檢測,再以序列分析的結果進行確認。我們發現除了兩種無意義的TAD2突變外,有13個人(12.7%)具有CEBPA突變,共有17種突變類型;20個人(19.6%)具有NPM突變,共有7種突變類型;20個人(20.2%)具有FLT3/ITD的突變;但在CEBPA突變與NPM突變的兩群病人之間並無交集的情形。此方法在CEBPA突變的偵測率為89.5%,在NPM突變與FLT3/ITD的偵測率則達100%。我們也對於此方法的偵測限制及疾病狀態監測用途進行評估,結果顯示此方法的敏感度達到5%,並可用於監測治療後早期復發的情形。因此我們所建構出的這套螢光片段分析方法,可望在將來能應用在臨床上快速篩檢AML病人是否帶有CEBPA突變、NPM突變及FLT3/ITD,並可對於帶有CEBPA突變或NPM突變的病人在治療後是否出現復發的情形進行監測。
zh_TW
dc.description.abstractAcute myeloid leukemias (AML) are clonal disorders that are characterized by acquired somatic mutations in hematopoietic progenitors. Mutations of CCAAT/enhancer binding protein α (CEBPA), nucleophosmin (NPM), and Fms-like tyrosine kinase-3 (FLT3) genes have been reported as the most frequent genetic variations in AML patients, and they have the important value in predicting prognosis, especially in those with normal karyotype. Due to the reappearances of the same CEBPA mutation and NPM mutation at relapse, these mutations are suitable as the biomarkers for monitoring minimal residue disease (MRD) in AML.
In this study, we designed a novel, rapid and reproducible method with high sensitivity and specificity for simultaneous screening of the CEBPA mutation, NPM mutation, and FLT3/ITD by multiplex PCR coupled with capillary electrophoresis and fluorescence detection. To verify this novel method, 102 AML patients were studied, and the results were then confirmed by PCR-coupled direct sequencing. In addition to two insignificant mutations, 17 distinct mutations in the CEBPA gene and seven in the NPM gene were found in the thirteen (12.7%) and twenty (19.6%) patients respectively, but none had both. Twenty patients (20.2%) had the FLT3/ITD mutation. The overall sensitivity of multiplex PCR for NPM mutation and FLT3/ITD were up to 100%, and that for CEBPA mutation was 89.5%. This novel method can detect mutant allele percentages down to 5% of total DNA and offer the ability to detect early relapse post-therapy. This simple and reproducible method which shows high sensitivity and apparent accuracy may be used as a screening and disease-monitoring tool for AML patients with CEBPA mutation, NPM mutation, and FLT3/ITD in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:37:24Z (GMT). No. of bitstreams: 1
ntu-95-R93424009-1.pdf: 1420471 bytes, checksum: 79949bf4498832dc032f005f49be4b0b (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要…………………………………………………………………1
英文摘要…………………………………………………………………3
第一章 序論……………………………………………………………5
第二章 研究目的………………………………………………………12
第三章 材料與方法……………………………………………………13
第四章 實驗結果………………………………………………………21
第五章 討論……………………………………………………………25
第六章 參考文獻………………………………………………………32
表………………………………………………………………………38
圖………………………………………………………………………44
附表……………………………………………………………………52
附圖……………………………………………………………………53
dc.language.isozh-TW
dc.subject螢光片段毛細管電泳分析zh_TW
dc.subject急性骨髓性白血病zh_TW
dc.subjectCCAAT加強子結合蛋白α基因zh_TW
dc.subject核仁磷酸蛋白基因zh_TW
dc.subject類Fms酪胺酸激&#37238zh_TW
dc.subject基因zh_TW
dc.subjectAMLen
dc.subjectCapillary electrophoresisen
dc.subjectFLT3en
dc.subjectNPMen
dc.subjectCEBPAen
dc.title建立一套多對引子聚合酶連鎖反應同時偵測CEBPA、NPM與FLT3/ITD基因突變的方法zh_TW
dc.titleA novel fluorescence-based multiplex PCR assay for rapid simultaneous detection of CEBPA mutations, NPM mutations, and FLT3/ITD in patients with acute myeloid leukemiaen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林尊湄,胡忠怡,周文堅,顏瑞鴻
dc.subject.keyword急性骨髓性白血病,CCAAT加強子結合蛋白α基因,核仁磷酸蛋白基因,類Fms酪胺酸激&#37238,基因,螢光片段毛細管電泳分析,zh_TW
dc.subject.keywordAML,CEBPA,NPM,FLT3,Capillary electrophoresis,en
dc.relation.page58
dc.rights.note有償授權
dc.date.accepted2006-07-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved