請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33377
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林太家 | |
dc.contributor.author | Ming-Yuan Wu | en |
dc.contributor.author | 吳銘原 | zh_TW |
dc.date.accessioned | 2021-06-13T04:37:18Z | - |
dc.date.available | 2008-07-20 | |
dc.date.copyright | 2006-07-20 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-18 | |
dc.identifier.citation | Tai-Chia Lin and Ping Zhang, Incompressible and Compressible Limits of Coupled Systems of Nonlinear Schrodinger Equations, to appear in Comm. Math. Phys.
P. Ao and S. T. Chui, Binary Bose-Einstein condensate mixtures in weakly and strongly segregated phases, phys. Rev. A 58 (1998), 4836-4840. B. D. Esry and C. H. Greene, Spontaneous spatial symmetry breaking in two-component Bose-Einstein condensates, Phys. Rev. A 59 (1999), 1457-1460. D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman and E. A. Cornell, Dynamics of component separation in a binary mixture of Bose-Einstein condensates, Phys. Rev. Lett. 81 (1998), 1539-1542 F. H. Lin, J. X. Xin, On the incompressible fluid limit and the vortex motion law of the nonlinear Schrodinger equation, Comm. Math. Phys. 200 (1999), no. 2, 249-274. A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Springer, New York 1984. V. M. Perez-Garcia, V. V. Konotop and V. A. Brazhnyi, Feshbach resonance induced shock waves in Bose-Einstein condensates, Phys. Rev. Lett. 92 (3004), 220403(1-4) L. Pitaevskii and S. Stringari, Bose-Einstein condensation, Oxford, 2003. C. Sulem and P. L. Sulem, The nonlinear Schrodinger equation self-focusing and wave collapse, Springer, New York 199 E. Timmermans, Phase separation of Bose-Einstein condensates, Phys. Rev. Lett 81 (1998), 5718-5721. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33377 | - |
dc.description.abstract | 本篇論文是以先前論文中的非線性薛丁格方程組來添加陷阱勢能,再利用其方程組推測其可壓縮與不可壓縮極限會受到什麼影響。我們驗證主要的想法是定義一個``H函數',加上證明一些守恆律,代換之後再做計算便可得到結果。
本篇論文分為四節。第一節,將所參考文獻中之原式提出並做修改;並以增加一項變數(陷阱勢能)來討論是否會得出相近結果,再將其結果寫出。第二節,證明守恆定律,並利用此結果在第三、第四節證明兩個主要的定理。 | zh_TW |
dc.description.abstract | We add the trap potentials based on coupled systems of nonlinear Schrodinger equation in the previous paper, and use these to conjecture possible effect of compressible and incompressible limits. The main idea of our arguments is to define an ``H-function', to prove some conservation laws, and to calculate for result after substitution.
There are four sections in this paper. In Section 1, we write the equations discussed in the main bibliography. Moreover, we discuss the result after adding one term(trap potential), and conclude the outcome. In Section 2, we prove some conservation laws. According to these,we prove the two main theorem in Section 3 and Section 4. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:37:18Z (GMT). No. of bitstreams: 1 ntu-95-R93221025-1.pdf: 435362 bytes, checksum: e116a904c4206935b0f76c1d3e982fc1 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | Abstract (in Chinese) i
Abstract (in English) ii Contents iii 1. Introduction 1 2. Conservation Laws 8 3. Proof of Theorem 1 13 4. Proof of Theorem 2 20 References 24 | |
dc.language.iso | en | |
dc.title | 具陷阱勢能之非線性薛丁格方程組的可壓縮與不可壓縮極限 | zh_TW |
dc.title | Compressible and Incompressible Limits of Coupled Systems of Nonlinear Schrodinger Equation with Trap Potentials | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳俊全,郭忠勝 | |
dc.subject.keyword | 非線性薛丁格方程,可壓縮與不可壓縮極限, | zh_TW |
dc.subject.keyword | Nonlinear Schrodinger Equation,Compressible and Incompressible Limits, | en |
dc.relation.page | 25 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-19 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 425.16 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。