Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33371
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫啟光(Chi-Kuang Sun)
dc.contributor.authorKung-Hsuan Linen
dc.contributor.author林宮玄zh_TW
dc.date.accessioned2021-06-13T04:37:00Z-
dc.date.available2007-04-01
dc.date.copyright2006-07-25
dc.date.issued2006
dc.date.submitted2006-07-19
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33371-
dc.description.abstract藉由壓電效應與超快光譜技術,奈米結構的壓電半導體可當成光學壓電換能器 (optical piezoelectric transducer) 產生與偵測奈米音波。利用光壓電換能器,我們研究奈米超音波學 (nano-ultrasonics) 中的物理問題及科技應用。本論文中,我們討論光學壓電換能器中奈米音波的產生與偵測原理,並用實驗方法驗證理論模型。在理論與光學技術的基礎下,我們用聲波工程的觀點去探討壓電換能器的設計原理及特性。我們討論了幾個議題,如聲波偵測器、窄頻與寬頻聲波產生器、可調頻聲波換能器。
利用聲米音波系統,我們在論文中示範了幾個創新的應用。首先,我們發現在奈米音波以兆赫 (THz) 頻段調制能帶時,電子與電洞的能量分佈也以兆赫頻率跟著被調制。這個研究顯示未來利用奈米音波控制電子元件的可行性。再者,我們將奈米音波應用在奈米超音波影像科技。在我們的一維奈米音波掃瞄量測技術中,精確度可小於一奈米。而在量測樣品之二維結構的實驗中,我們證明此技術的縱向解析度可以小於二十奈米。若對二維影像做進一步處理,橫向解析度可小於一百奈米。實驗上,我們證明這個創新的奈米超音波技術擁有非破壞性、三維解析能力及奈米解析度的優點,這些優點是目前其他影像技術所無法同時擁有的。為了不需後處理技術而直接取得三維奈米音波影像,我們示範如何產生奈米大小的聲波源。利用設計過的二維光場分佈在光學壓電換能器中預先激發電子電洞,我們可以產生不受光學繞射極限所限制的奈米聲波源。
論文中,我們也示範如何用奈米音波系統來研究奈米音波元件特性。利用單量子井結構的光學壓電換能器,我們直接在時間上量測兆赫頻段的奈米音波波形。聲波元件中,聲子奈米晶體在可當作奈米音波反射鏡。利用這個方法,我們在實驗上直接量得聲子奈米晶體的反射轉換函數 (transfer function)。此外,我們也研究能隙 (bandgap) 音波在聲子奈米晶體中能量傳播的行為。
除了異質結構的壓電半導體,我們示範在P型與N型接面的空乏區(depletion region) 中,也可以透過壓電效應產生奈米音波脈衝。由於外在電場可控制空乏區大小,而音波脈衝的波形是由空乏區所決定,這意味著未來結合電子系統控制音波脈衝波形的可能性。此研究中,我們另一方面也直接用實驗證明在壓電半導體中,壓電效應是產生音波最有效率的方法。
zh_TW
dc.description.abstractPiezoelectric semiconductor nanostructures can be treated as optical piezoelectric transducers to generate and detect acoustic nanowaves through the piezoelectric effects by femtoseocond pump-probe techniques. With the optical piezoelectric transducer, several physical issues and applications in nano-ultrasonics can be investigated. In this thesis, the theories of generation and detection of acoustic nanowaves in the optical piezoelectric transducers have been presented, and verified by experiments. With the theories and optical techniques, the design principles and characterization methods of the optical piezoelectric transducers have been illustrated from the viewpoint of acoustic engineering. We have discussed several topics such as acoustic sensors, narrowband and broadband acoustic wave generator, and frequency-tunable acoustic transducers.
Based on the nano-acoustic system, several novel applications have been demonstrated in this thesis. Firstly, we have found that the energy distributions of electrons and holes can follow the band modulation due to the acoustic nanowaves in THz regime. These investigations imply the feasibility to utilize acoustic nanowaves for controlling electronic devices. Secondly, we have demonstrated that acoustic nanowaves can be utilized for ultrasonic imaging. The accuracy of one-dimensional ultrasonic scan measurement is less than one nanometer. For resolving a two-dimensional subsurface structure, the axial resolution is less than 20 nm while the transverse resolution can be less than 100 nm if the images are post-processed. We have demonstrated that the novel nano-ultrasonic technology has the advantages of non-destructive measurement, three-dimensional imaging capability, and nanometer resolutions, of which another state-of-the-art imaging technology does not possess all. Thirdly, to directly obtain a three-dimensional ultrasonic image with nanometer resolutions, the technique of generating acoustic nanospots has been demonstrated. With beam shaped optical pulses for exciting saturation carriers, the acoustic spot size can be smaller than the optical spot size, which is on the micron scale due to the diffraction limit.
On the other hand, we have also used the nano-acoustic system to characterize nanowave devices. By using a single-quantum-well structure optical piezoelectric transducer, the waveforms of sub-THz or THz acoustic nanowaves can be directly measured in the time domain. We have used this method to experimentally obtain the reflection transfer function of a phononic bandgap nano-crystal, which can be served as a mirror for acoustic nanowaves. Moreover, we have investigated the energy propagation of bandgap waves in the phononic bandgap nano-crystal.
Besides the piezoelectric semiconductor heterostructures, we have also demonstrated that acoustic nano-pulses can be generated in the depletion region of a p-n junction through the piezoelectric effects. The shape and width of the acoustic nano-pulses are determined by the depletion region, which can be controlled by an external bias. This interesting demonstration has shown the possibility to integrate electronic technologies for controlling acoustic nanopulses. In this study, the high optoacoustic conversion efficiency of the piezoelectric effects has also been experimentally confirmed in piezoelectric semiconductors.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:37:00Z (GMT). No. of bitstreams: 1
ntu-95-F90941009-1.pdf: 4717603 bytes, checksum: c94ad223c63f95805957c1cf88a10dc8 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents誌謝 i
Acknowledgements iii
摘要 v
Abstract vii
Table of Contents ix
List of Figures xv
List of Abbreviations xix

Chapter 1 Introduction 1

1.1 Overview of Coherent Acoustic Phonon Studies 2
1.2 Acoustic Wave Systems 3
1.3 Nano-Ultrasonics 5

Chapter 2 Optical Generation and Detection of Acoustic Nanowaves 8

2.1 Optical Generation of Acoustic Nanowaves in Heterostructures 9
2.1.1 Loaded-String Model Derived by a Macroscopic Theory 9
2.1.2 Principles of Exciting Acoustic Nanowaves by Femtosecond Optical Pulses 12
2.1.3 Generation of Acoustic Nanowaves in Heterostructures 14

2.2 Optical Detection of Acoustic Nanowaves 18
2.2.1 Sensitivity Function of Quantum Wells 18
2.2.2 Fabry-Perot Type Optical Detection 22

2.3 Experimental Studies of Acoustic Nanowaves in MQW 25
2.3.1 Sample Structure 25
2.3.2 Experimental Setup 26
2.3.3 Experimental Results 28

2.4 Optical Piezoelectric Transducer 30
2.4.1 Design Principles 31
2.4.2 Impulse Response 32
2.4.3 Acoustic Waveform Synthesis 34
2.4.4 Acoustic Sensor 37
2.4.5 Advantages of Optical Piezoelectric Transducers 39

Chapter 3 Terahertz Carrier Distribution Modulation by Acoustic Nanowaves 42

3.1 Experimental Conditions 43
3.1.1 Sample Structure 43
3.1.2 Experimental Setup 43

3.2 Method 43

3.3 Experimental Results 45
3.3.1 Traces for Different Probe Wavelengths 45
3.3.2 Enhancement Ratio for Different Carrier Concentrations 47

3.4 Discussions 48
3.4.1 Carrier Distribution Modulation 48
3.4.2 Fermi-Distributions of Electrons and Holes 51

Chapter 4 Two-Dimensional Nano-Ultrasonic Imaging 56

4.1 Experimental Conditions 57
4.1.1 Sample Preparation 57
4.1.2 Experimental Setup for 1D Scan Measurement 58
4.1.3 Experimental Setup for 2D Scan Measurement 59
4.1.4 Estimation of the Optical Spot on the Submicron Scale 60

4.2 One-Dimensional Ultrasonic Scan Measurement 63
4.2.1 Experimental Results 63
4.2.2 Signal Processing by a Bandpass Filter 64
4.2.3 Discussions 66

4.3 Two-Dimensional Ultrasonic Scan Measurement 67
4.3.1 Two-Dimensional Images of Buried Nanostructures 68
4.3.2 Investigations of Transverse Resolutions 70
4.3.3 Discussions 73

Chapter 5 Reducing the Acoustic Spot with Pre-saturated Optical Pulse 75

5.1 Principles 76
5.1.1 Saturation Phenomena of Generating Acoustic Nanowaves in Optical Piezoelectric Transducers 76
5.1.2 Reduction of the Acoustic Spot Size 82
5.1.3 Measurement of the Acoustic Spot Size 85

5.2 Experimental Conditions 87
5.2.1 Sample Structure 87
5.2.2 Phase plate 87
5.2.3 Experimental Setup 87

5.3 Experimental Results 88

5.4 Analysis 91

Chapter 6 Transient Waveform Analysis of a Phonoinc Bandgap Nano-Crystal 95

6.1 Experimental Conditions 96
6.1.1 Sample Structure 96
6.1.2 Experimental Setup 96

6.2 Method 97
6.2.1 Characterization of the Acoustic Sensor 97
6.2.2 Acoustic Nanowaves in the Phonon Cavity 99

6.3 Experimental Results 101

6.4 Simulations and Discussions 105

6.5 Waveform Analysis 107
6.5.1 Apparent Superluminal Phenomena 107
6.5.2 Experimental Verification 108

Chapter 7 Generation of Acoustic Nano-Pulses in a P-N Junction 114

7.1 Principles 115
7.1.1 Generation of Acoustic Pulses 115
7.1.2 Optoacoustic Efficiency for Different Mechanisms 115

7.2 Experimental Conditions 116
7.2.1 Sample Preparation 116
7.2.2 Experimental Setup 117

7.3 Experimental Results 117
7.3.1 Sample A for Detection of Propagating Acoustic Pulses 117
7.3.2 Sample B for Discrimination of the Acoustic Pulse Sources 119

7.4 Discussions 120
7.4.1 Generation Mechanisms 120
7.4.2 Shapes of the Acoustic Pulses 123

Chapter 8 Summary and Outlook 127

References 130
CV of the author 145
dc.language.isoen
dc.subject超快zh_TW
dc.subject音波zh_TW
dc.subject奈米zh_TW
dc.subject半導體zh_TW
dc.subject飛秒zh_TW
dc.subject雷射zh_TW
dc.subject奈米超音波zh_TW
dc.subjectfemtoseconden
dc.subjectacoustic waveen
dc.subjectnano-ultrasonicsen
dc.subjectsemiconductoren
dc.subjectlaseren
dc.subjectultrafasten
dc.subjectnanoen
dc.title以飛秒雷射建構奈米音波系統:原理及應用zh_TW
dc.titleFemtosecond-Laser-Based Nano-Acoustic Systems: Principles and Applicationsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee齊正中(John Cheng-Chung Chi),張玉明(Yu-Ming Chang),孫建文(Kien-Wen Sun),綦振瀛(Jen-Inn Chyi),謝文峰(Wen-Feng Hsieh),吳政忠(Tsung-Tsong Wu)
dc.subject.keyword音波,奈米,半導體,超快,飛秒,雷射,奈米超音波,zh_TW
dc.subject.keywordacoustic wave,nano,semiconductor,ultrafast,femtosecond,laser,nano-ultrasonics,en
dc.relation.page155
dc.rights.note有償授權
dc.date.accepted2006-07-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved